OFFSET
1,1
COMMENTS
Squarefree numbers of the form p*q*r, where p < q < r = primes with q = 2*p - 1 and r = 2*q - 1; that is, r = 4*p - 3.
These numbers are divisible by the arithmetic mean of their proper divisors.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
3882139 = 79*157*313; 157 = 2*79 - 1; 313 = 2*157 - 1.
MATHEMATICA
t = {}; p = 1; Do[While[p = NextPrime[p]; ! (PrimeQ[p2 = 2 p - 1] && PrimeQ[p3 = 2 p2 - 1])]; AppendTo[t, p*p2*p3], {30}]; t (* T. D. Noe, Nov 15 2013 *)
3#-10#^2+8#^3&/@Select[Prime[Range[600]], AllTrue[{2#-1, 4#-3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 02 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 13 2013
STATUS
approved