login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136247
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial h(n,x) with h(0,x)=1, h(1,x)=1-x and recursively h(n,x) = 1 + n -(1-x)*(1-h(n-1,x)) - n*h(n-2,x).
3
1, 1, -1, 1, -1, 1, 1, 2, 2, -1, 1, 6, -4, -3, 1, 1, -4, -20, 6, 4, -1, 1, -40, 8, 44, -8, -5, 1, 1, -12, 188, -6, -80, 10, 6, -1, 1, 308, 136, -546, -10, 130, -12, -7, 1, 1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1, 1, -2664, -3640, 6696, 1984, -2506, -126, 280, -16, -9, 1
OFFSET
0,8
COMMENTS
Row sums are 1, 0, 1, 4, 1, -14, 1, 106, 1, -944, 1, 10396, 1, -135134, 1, 2027026, 1, -34459424, 1, 654729076, 1...
[Row sums s(n) appear to obey s(n) -2*s(n-1) +(n+1)*s(n-2) +2*(1-n)*s(n-3) +(n-2)* s(n-4)=0. - R. J. Mathar, Dec 04 2011]
REFERENCES
Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, pp. 8, 42-43.
EXAMPLE
1;
1, -1;
1, -1, 1;
1, 2, 2, -1;
1, 6, -4, -3, 1;
1, -4, -20,6, 4, -1;
1, -40, 8, 44, -8, -5, 1;
1, -12, 188, -6, -80,10, 6, -1;
1, 308, 136, -546, -10, 130, -12, -7, 1;
1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1;
1, -2664, -3640, 6696, 1984, -2506, -126,280, -16, -9, 1;
MAPLE
h := proc(n, x)
if n = 0 then
1 ;
elif n = 1 then
1-x ;
else
1+n-(1-x)*(1-procname(n-1, x)) -n*procname(n-2, x) ;
expand(%) ;
end if;
end proc:
A136247 := proc(n, k)
coeftayl(h(n, x), x=0, k) ;
end proc:
seq(seq(A136247(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 04 2011
MATHEMATICA
Clear[h, a, n, x, y, c, d] (*Solve linear Shabat transform for Hermite type recursion*) Solve[c*x0 + d - x*(c*x1 + d) + n*(c*x2 + d) == 0, x0] c = -1; d = 1; Solve[y = c*x + d == 0, x] h[x, 0] = 1; h[x, 1] = 1 - x; h[x_, n_] := h[x, n] = -(-1 - n + (1 - x) - (1 - x)* h[ x, n - 1] + n *h[x, n - 2]); Table[ExpandAll[h[x, n]], {n, 0, 10}]; a = Table[CoefficientList[h[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[x, n], x]], {n, 0, 10}];
CROSSREFS
Cf. A137286.
Sequence in context: A309575 A014291 A136587 * A370207 A086610 A141760
KEYWORD
easy,tabl,sign
AUTHOR
Roger L. Bagula, Mar 17 2008
STATUS
approved