login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136244
Least positive integer k such that 2k can be expressed as the sum of two primes in exactly n ways.
5
1, 2, 5, 11, 17, 24, 30, 39, 42, 45, 57, 72, 60, 84, 90, 117, 123, 144, 120, 105, 162, 150, 180, 237, 165, 264, 288, 195, 231, 240, 210, 285, 255, 336, 396, 378, 438, 357, 399, 345, 519, 315, 504, 465, 390, 480, 435, 462, 450, 567, 717, 420, 495, 651, 540, 615, 759, 525, 570, 693, 645
OFFSET
0,2
COMMENTS
It appears that 2, 3, 4, 6 are the only numbers k such that 2k can be expressed as the sum of two primes in only one way.
Except when n = 1, a(n) = A258713(n). The first 11 terms of this sequence are the same as the initial terms of A053033. If a(n) exists for all n then A053033 is a subsequence. - Andrew Howroyd, Jan 28 2020
LINKS
FORMULA
From Andrew Howroyd, Jan 28 2020: (Start)
a(n) = A023036(n) / 2.
A045917(a(n)) = n. (End)
EXAMPLE
a(3) = 11: 22 = 3 + 19 = 5 + 17 = 11 + 11. Also 22 is the least number which could be expressed as the sum of two prime numbers in exactly three ways.
PROG
(PARI) a(n, lim=oo)={for(i=1, lim, my(s=0); forprime(p=2, i, s+=isprime(2*i-p)); if(s==n, return(i))); -1} \\ Andrew Howroyd, Jan 28 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
K. B. Subramaniam (shunya_1950(AT)yahoo.co.in), Dec 24 2007
EXTENSIONS
a(0)=1 prepended, a(5) corrected and a(7) and beyond from Andrew Howroyd, Jan 28 2020
STATUS
approved