login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309575
Expansion of Product_{k>=1} (1 - (x*(1 + x))^k).
0
1, -1, -2, -2, -1, 1, 5, 11, 17, 26, 36, 35, 20, -5, -65, -221, -510, -897, -1379, -2157, -3498, -5225, -6500, -6425, -4775, -1463, 5951, 25905, 74833, 173129, 334719, 563200, 876876, 1363232, 2208921, 3621969, 5631470, 7896109, 9725768, 10374574, 9340382, 6104500, -1413334
OFFSET
0,3
FORMULA
G.f.: exp(-Sum_{k>=1} sigma(k)*(x*(1+x))^k/k).
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 - (x*(1+x))^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x*(1+x))^k))
(PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k)*(x*(1+x))^k/k)))
CROSSREFS
Convolution inverse of A238441.
Sequence in context: A177694 A092450 A279629 * A014291 A136587 A136247
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 21 2019
STATUS
approved