The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238441 Expansion of 1/Product_{n>=1} (1 - (q + q^2)^n). 5
 1, 1, 3, 7, 16, 36, 79, 171, 367, 776, 1625, 3379, 6969, 14262, 29001, 58644, 117951, 235994, 469904, 931642, 1839708, 3618893, 7092676, 13853271, 26970933, 52350092, 101316743, 195544281, 376411466, 722747148, 1384416306, 2645765058, 5045240163, 9600533209, 18231674112, 34554871809, 65369632350, 123440337791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS What does this sequence count? LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..4400 FORMULA G.f.: 1/Product_{n>=1} (1 - (q + q^2)^n). G.f.: P(x+x^2), where P(x) is g.f. of A000041, a(n) = Sum_{k=0..n} binomial(k,n-k)*p(k), where p(n) is number of partitions n. - Vladimir Kruchinin, Dec 21 2015 a(n) ~ phi^n * exp(Pi*sqrt(2*phi*n/(3*sqrt(5))) + Pi^2/(60*phi)) / (4*sqrt(3)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 21 2015 MATHEMATICA nmax=40; CoefficientList[Series[Product[1/(1 - (x+x^2)^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 21 2015 *) PROG (PARI) q = 'q + O('q^66); Vec(1/eta(q*(1+q))) CROSSREFS Cf. A266108, A266124. Sequence in context: A023523 A065979 A106463 * A173514 A045891 A081037 Adjacent sequences:  A238438 A238439 A238440 * A238442 A238443 A238444 KEYWORD nonn AUTHOR Joerg Arndt, Feb 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 15:16 EST 2020. Contains 338927 sequences. (Running on oeis4.)