OFFSET
0,3
COMMENTS
What does this sequence count?
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..4400
FORMULA
G.f.: 1/Product_{n>=1} (1 - (q + q^2)^n).
G.f.: P(x+x^2), where P(x) is g.f. of A000041, a(n) = Sum_{k=0..n} binomial(k,n-k)*p(k), where p(n) is number of partitions n. - Vladimir Kruchinin, Dec 21 2015
a(n) ~ phi^n * exp(Pi*sqrt(2*phi*n/(3*sqrt(5))) + Pi^2/(60*phi)) / (4*sqrt(3)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 21 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1 - (x+x^2)^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 21 2015 *)
PROG
(PARI) q = 'q + O('q^66); Vec(1/eta(q*(1+q)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 27 2014
STATUS
approved