login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238441
Expansion of 1/Product_{n>=1} (1 - (q + q^2)^n).
5
1, 1, 3, 7, 16, 36, 79, 171, 367, 776, 1625, 3379, 6969, 14262, 29001, 58644, 117951, 235994, 469904, 931642, 1839708, 3618893, 7092676, 13853271, 26970933, 52350092, 101316743, 195544281, 376411466, 722747148, 1384416306, 2645765058, 5045240163, 9600533209, 18231674112, 34554871809, 65369632350, 123440337791
OFFSET
0,3
COMMENTS
What does this sequence count?
LINKS
FORMULA
G.f.: 1/Product_{n>=1} (1 - (q + q^2)^n).
G.f.: P(x+x^2), where P(x) is g.f. of A000041, a(n) = Sum_{k=0..n} binomial(k,n-k)*p(k), where p(n) is number of partitions n. - Vladimir Kruchinin, Dec 21 2015
a(n) ~ phi^n * exp(Pi*sqrt(2*phi*n/(3*sqrt(5))) + Pi^2/(60*phi)) / (4*sqrt(3)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 21 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1 - (x+x^2)^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 21 2015 *)
PROG
(PARI) q = 'q + O('q^66); Vec(1/eta(q*(1+q)))
CROSSREFS
Sequence in context: A023523 A065979 A106463 * A173514 A045891 A081037
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 27 2014
STATUS
approved