login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238440
Expansion of 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).
3
1, 1, 3, 9, 27, 79, 229, 657, 1873, 5304, 14944, 41895, 116947, 325133, 900617, 2486183, 6841490, 18770754, 51358188, 140154540, 381540434, 1036261537, 2808328337, 7594958401, 20499680869, 55227373266, 148520150761, 398726637407, 1068701794158, 2859956501816, 7642086948143, 20391083977989, 54333644617311
OFFSET
0,3
COMMENTS
What does this sequence count?
FORMULA
G.f.: 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).
PROG
(PARI) q = 'q + O('q^66); Vec( 1/eta(q/eta(q)) )
CROSSREFS
Cf. A109085: G.f. 1/E(q/E(q/E(q/E(q/E(q/E...))))).
Sequence in context: A266497 A291020 A282087 * A269578 A026289 A027129
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 27 2014
STATUS
approved