Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 22 2019 09:17:29
%S 1,-1,-2,-2,-1,1,5,11,17,26,36,35,20,-5,-65,-221,-510,-897,-1379,
%T -2157,-3498,-5225,-6500,-6425,-4775,-1463,5951,25905,74833,173129,
%U 334719,563200,876876,1363232,2208921,3621969,5631470,7896109,9725768,10374574,9340382,6104500,-1413334
%N Expansion of Product_{k>=1} (1 - (x*(1 + x))^k).
%F G.f.: exp(-Sum_{k>=1} sigma(k)*(x*(1+x))^k/k).
%t nmax = 40; CoefficientList[Series[Product[(1 - (x*(1+x))^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 22 2019 *)
%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x*(1+x))^k))
%o (PARI) N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k)*(x*(1+x))^k/k)))
%Y Convolution inverse of A238441.
%Y Cf. A266108, A306565, A307501, A307548, A327671.
%K sign
%O 0,3
%A _Seiichi Manyama_, Sep 21 2019