login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136587
Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.
0
2, -2, 1, 1, 6, 0, -8, 0, 1, -48, -5, 87, 1, -20, 0, 1, 392, 0, -984, 0, 346, 0, -35, 0, 1, -3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1, 46032, 0, -187338, 0, 114745, 0, -23813, 0, 2070, 0, -77, 0, 1, -645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0, 3993, 0, -104, 0, 1, 10322304, 0, -58438830, 0
OFFSET
1,1
COMMENTS
Row sums are:
{2, 0, -1, 16, -280, 3620, -48380, 696680, -10740280, 175631200, -3000871600}
The double function Integration is not orthogonal:
Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];
Both types have the polynomial:
p[x]=6 - 8 x^2 + x^4
Original Hermite has:
p[x]=8 - 9 x^2 + x^4
Integration of these as:
f[y_] = Integrate[Exp[ -x^2/4]*p[x], {x, Infinity, y}]
g[z_] = Integrate[Exp[ -y^2/4]*f[y], {y, Infinity, z}]
gives three level or four level curves with negative limit of 2*Pi.
FORMULA
H2(x,n)=A137286(x,n)+A137286(x,2*n)
EXAMPLE
{2},
{-2, 1, 1},
{6, 0, -8, 0, 1},
{-48, -5, 87,1, -20, 0, 1},
{392, 0, -984, 0, 346, 0, -35, 0, 1},
{-3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1},
{46032, 0, -187338, 0,114745, 0, -23813, 0, 2070, 0, -77, 0, 1},
{-645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0,3993, 0, -104,0, 1},
{10322304, 0, -58438830, 0, 51450870, 0, -16289000, 0, 2386396, 0, -178893, 0, 7007, 0, -135, 0, 1},
{-185794560, 2895, 1203216525, -2640, -1223803350,
588, 455259420, -44, -80424630, 1, 7561554, 0, -395850, 0, 11460, 0, -170,
0, 1},
{3715887360, 0, -27125479980, 0, 31335461535, 0, -13408093762, 0, 2775672846, 0,-314143829, 0, 20603310, 0, -796620, 0, 17748, 0, -209, 0, 1}
MATHEMATICA
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, 2*n]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]
CROSSREFS
Cf. A137286.
Sequence in context: A279629 A309575 A014291 * A136247 A370207 A086610
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 30 2008
STATUS
approved