login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136584
G.f. A(x) satisfies: 1+x = Sum_{n>=0} C(2^n,n) * x^n / A(x)^(2^n).
0
1, 1, 3, 31, 1327, 170211, 68333813, 89675072255, 397525147082217, 6103188627225900995, 331088233835064606501621, 64490029272314754165301653295, 45679131008965219349145151231118965
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: 1+x = Sum_{n>=0} log( (1 + 2^n*x)/A(x) )^n / n!.
EXAMPLE
G.f. A(x) = 1 + x + 3*x^2 + 31*x^3 + 1327*x^4 + 170211*x^5 + ...
1 + x = Sum_{n>=0} C(2^n,n) * x^n * A(x)^(-2^n) =
(1 - x - 2x^2 - 26x^3 - 1264x^4 - 167480x^5 - 67988870x^6 -...) +
.2x*(1 - 2x - 3x^2 - 48x^3 - 2472x^4 - 332328x^5 -...) +
...6x^2*(1 - 4x - 2x^2 - 84x^3 - 4743x^4 - 654480x^5 -...) +
.......56x^3*(1 - 8x + 12x^2 - 152x^3 - 8810x^4 -...) +
..........1820x^4*(1 - 16x + 88x^2 - 496x^3 - 15044x^4 -...) +
..............201376x^5*(1 - 32x + 432x^2 - 3808x^3 -...) +
..................74974368x^6*(1 - 64x + 1888x^2 +...) + ...
PROG
(PARI) {a(n)=local(A=[1, 1]); if(n<0, 0, if(n==0, 1, for(i=0, n-1, A=concat(A, 0); A[ #A]=Vec(sum(n=0, #A-1, log((1+2^n*x)/Ser(A))^n/n!))[ #A]); A[n+1]))}
CROSSREFS
Cf. A014070 (C(2^n, n)).
Sequence in context: A029729 A319253 A328811 * A194937 A141153 A144906
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2008
STATUS
approved