login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029729
Degree of the variety of pairs of commuting n X n matrices.
2
1, 3, 31, 1145, 154881, 77899563, 147226330175, 1053765855157617, 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463, 1862632561783036151478238040096092649, 11143500837236042423379349834982088594105985
OFFSET
1,2
COMMENTS
Also, ratio of vector elements of the ground state in the loop representation of the braid-monoid Hamiltonian H = Sum_i (3 - 2 e_i - b_i) with size 2n and periodic boundary conditions. Specifically the smallest element that corresponds to a non-crossing chord diagram, divided by the overall smallest element. We reduce the standard braid-monoid algebra to the Brauer algebra B_{2n}(1). - B. Nienhuis & J. de Gier (B.Nienhuis(AT)UvA.NL), May 13 2004. For a proof that this is the same sequence, see the articles by P. Di Francesco and P. Zinn-Justin and A. Knutson and P. Zinn-Justin.
These numbers arise in a similar way to A005130 and related sequences appear in the groundstate of the integrable Temperley-Lieb Hamiltonian.
It is also the weighted enumeration of lattice paths on an n X n square lattice going from the left side to the top side, with same initial and final orders of paths, and with a weight of 2 per vertex where a path turns 90 degrees. - Paul Zinn-Justin, Mar 05 2023
LINKS
Jan de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
P. Di Francesco and P. Zinn-Justin, Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties, Comm. Math. Phys., 262(2):459-487, 2006; arXiv preprint, arXiv:math-ph/0412031, 2004-2005.
A. Garbali and P. Zinn-Justin, Shuffle algebras, lattice paths and the commuting scheme, arXiv:2110.07155 [math.RT], 2021-2022. See also Macaulay2 code to generate the sequence.
A. Knutson and P. Zinn-Justin, A scheme related to the Brauer loop model, Adv. Math., 214(1):40-77, 2007, arXiv preprint, arXiv:math/0503224 [math.AG], 2005-2006.
Macaulay 2 Manual, Test of matrix routines, Viewed May 03 2016.
M. J. Martins, B. Nienhuis, and R. Rietman, An Intersecting Loop Model as a Solvable Super Spin Chain, arXiv:cond-mat/9709051 [cond-mat.stat-mech], 1997; Phys. Rev. Lett. Vol. 81 (1998) pp. 504-507.
Ada Stelzer and Alexander Yong, Combinatorial commutative algebra rules, arXiv:2306.00737 [math.CO], 2023.
FORMULA
There is a formula in terms of divided differences operators (too complicated to reproduce here).
EXAMPLE
n=1: Degree of C X C which is 1. n=2: The degree can be calculated by hand to be 3. n=3: See Macaulay manual (link above): one of steps in proof that variety for 3 X 3 is Cohen-Macaulay is to compute the degree which is 31. (n=4) Matt Clegg (CS at UCSD) and Nolan Wallach using 10 Sun Workstations and a distributed Grobner Basis package (in 1993).
(2(e1 + e2 + e3 + e4) + b1 + b2 + b3 + b4)(G + G e2 + b2)(e1 e3 b2) = 12 (G + G e2 + b2)(e1 e3 b2) with G = 3, therefore a(2) = 3
CROSSREFS
Cf. A005130.
Sequence in context: A219266 A022514 A094579 * A319253 A328811 A136584
KEYWORD
nonn,nice
AUTHOR
Nolan R. Wallach (nwallach(AT)euclid.ucsd.edu), Dec 11 1999
EXTENSIONS
Entry revised based on comments from Paul Zinn-Justin, Mar 14 2005
Terms a(12) and beyond from Paul Zinn-Justin, Mar 05 2023
STATUS
approved