Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Jun 14 2023 16:49:32
%S 1,3,31,1145,154881,77899563,147226330175,1053765855157617,
%T 28736455088578690945,3000127124463666294963283,
%U 1203831304687539089648950490463,1862632561783036151478238040096092649,11143500837236042423379349834982088594105985
%N Degree of the variety of pairs of commuting n X n matrices.
%C Also, ratio of vector elements of the ground state in the loop representation of the braid-monoid Hamiltonian H = Sum_i (3 - 2 e_i - b_i) with size 2n and periodic boundary conditions. Specifically the smallest element that corresponds to a non-crossing chord diagram, divided by the overall smallest element. We reduce the standard braid-monoid algebra to the Brauer algebra B_{2n}(1). - B. Nienhuis & J. de Gier (B.Nienhuis(AT)UvA.NL), May 13 2004. For a proof that this is the same sequence, see the articles by P. Di Francesco and P. Zinn-Justin and A. Knutson and P. Zinn-Justin.
%C These numbers arise in a similar way to A005130 and related sequences appear in the groundstate of the integrable Temperley-Lieb Hamiltonian.
%C It is also the weighted enumeration of lattice paths on an n X n square lattice going from the left side to the top side, with same initial and final orders of paths, and with a weight of 2 per vertex where a path turns 90 degrees. - _Paul Zinn-Justin_, Mar 05 2023
%H Paul Zinn-Justin, <a href="/A029729/b029729.txt">Table of n, a(n) for n = 1..16</a>
%H Jan de Gier, <a href="https://arxiv.org/abs/math/0211285">Loops, matchings and alternating-sign matrices</a>, arXiv:math/0211285 [math.CO], 2002-2003.
%H P. Di Francesco and P. Zinn-Justin, <a href="https://doi.org/10.1007/s00220-005-1476-5">Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties</a>, Comm. Math. Phys., 262(2):459-487, 2006; <a href="http://arxiv.org/abs/math-ph/0412031">arXiv preprint</a>, arXiv:math-ph/0412031, 2004-2005.
%H A. Garbali and P. Zinn-Justin, <a href="http://arxiv.org/abs/2110.07155">Shuffle algebras, lattice paths and the commuting scheme</a>, arXiv:2110.07155 [math.RT], 2021-2022. See also <a href="https://www.unimelb-macaulay2.cloud.edu.au/#tutorial-cirm-8">Macaulay2 code</a> to generate the sequence.
%H A. Knutson and P. Zinn-Justin, <a href="https://doi.org/10.1016/j.aim.2006.09.016">A scheme related to the Brauer loop model</a>, Adv. Math., 214(1):40-77, 2007, <a href="https://arxiv.org/abs/math/0503224">arXiv preprint</a>, arXiv:math/0503224 [math.AG], 2005-2006.
%H Macaulay 2 Manual, <a href="http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.8.2/share/Macaulay2/Macaulay2Doc/test/matrix.m2">Test of matrix routines</a>, Viewed May 03 2016.
%H M. J. Martins, B. Nienhuis, and R. Rietman, <a href="https://arxiv.org/abs/cond-mat/9709051">An Intersecting Loop Model as a Solvable Super Spin Chain</a>, arXiv:cond-mat/9709051 [cond-mat.stat-mech], 1997; Phys. Rev. Lett. Vol. 81 (1998) pp. 504-507.
%H Ada Stelzer and Alexander Yong, <a href="https://arxiv.org/abs/2306.00737">Combinatorial commutative algebra rules</a>, arXiv:2306.00737 [math.CO], 2023.
%F There is a formula in terms of divided differences operators (too complicated to reproduce here).
%e n=1: Degree of C X C which is 1. n=2: The degree can be calculated by hand to be 3. n=3: See Macaulay manual (link above): one of steps in proof that variety for 3 X 3 is Cohen-Macaulay is to compute the degree which is 31. (n=4) Matt Clegg (CS at UCSD) and Nolan Wallach using 10 Sun Workstations and a distributed Grobner Basis package (in 1993).
%e (2(e1 + e2 + e3 + e4) + b1 + b2 + b3 + b4)(G + G e2 + b2)(e1 e3 b2) = 12 (G + G e2 + b2)(e1 e3 b2) with G = 3, therefore a(2) = 3
%Y Cf. A005130.
%K nonn,nice
%O 1,2
%A Nolan R. Wallach (nwallach(AT)euclid.ucsd.edu), Dec 11 1999
%E Entry revised based on comments from _Paul Zinn-Justin_, Mar 14 2005
%E Terms a(12) and beyond from _Paul Zinn-Justin_, Mar 05 2023