login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219266
Logarithmic derivative of the superfactorials (A000178).
3
1, 3, 31, 1103, 171311, 149089887, 877704854447, 40451674467223423, 16514355739866259408591, 66586047491662065505372477983, 2923692867015618804999172694908629103, 1527767556403309713534536695030930443376591295, 10306227067090276816548435451550663056418226402352755215
OFFSET
1,2
COMMENTS
Superfactorial A000178(n) equals the product of first n factorials.
FORMULA
a(n) ~ n^(n^2/2 + n + 17/12) * (2*Pi)^((n+1)/2) / (A * exp(3*n^2/4 + n - 1/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 31*x^3/3 + 1103*x^4/4 + 171311*x^5/5 +...
where
exp(L(x)) = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + 125411328000*x^7 +...+ n!*(n-1)!*(n-2)!*...*3!*2!*1!*0!**x^n +...
MATHEMATICA
nmax=15; Rest[CoefficientList[Series[Log[Sum[BarnesG[k+2]*x^k, {k, 0, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
PROG
(PARI) {a(n)=n*polcoeff(log(sum(k=0, n+1, prod(j=0, k, j!)*x^k)+x*O(x^n)), n)}
for(n=1, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved