login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219268
Logarithmic derivative of A001142, where A001142(n) = product{k=1..n} k^k/k!.
3
1, 3, 22, 347, 11986, 956334, 184142134, 87903876147, 105736320973732, 323943204887363938, 2547547949361933790328, 51735228018482706470521574, 2726127372514537039881847535054, 374214400937086673452020875815709240, 134262616041282033840675468757467513112522
OFFSET
1,2
COMMENTS
A001142(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n).
FORMULA
a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 - 2/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 22*x^3/3 + 347*x^4/4 + 11986*x^5/5 + 956334*x^6/6 +...
where
exp(L(x)) = 1 + x + 2*x^2 + 9*x^3 + 96*x^4 + 2500*x^5 + 162000*x^6 + 26471025*x^7 + 11014635520*x^8 +...+ A001142(n)*x^n +...
MATHEMATICA
nmax=15; Rest[CoefficientList[Series[Log[Sum[Product[j^j/j!, {j, 1, k}]*x^k, {k, 0, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
PROG
(PARI) {a(n)=n*polcoeff(log(sum(k=0, n+1, prod(j=0, k, j^j/j!)*x^k)+x*O(x^n)), n)}
for(n=1, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved