login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219270
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^n * Product_{k=0..n} k!.
1
1, 1, 3, 19, 357, 36301, 25099919, 125586786039, 5057589140280713, 1834978988294513263993, 6658624933768189847669906875, 265790340541205664455435665865706651, 127313966488883223582008076686428073754622381, 792786699250878346141762323574616271109902136066501317
OFFSET
0,3
FORMULA
a(n) = [x^n] F(x)^(n+1)/(n+1) where F(x) = Sum_{n>=0} x^n*Product_{k=0..n} k! is the g.f. of the superfactorials A000178.
G.f.: (1/x)*Series_Reversion(x/F(x)) where F(x) = Sum_{n>=0} x^n*Product_{k=0..n} k! is the g.f. of A000178.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 357*x^4 + 36301*x^5 + 25099919*x^6 +...
where
A(x) = 1 + 1!*x*A(x) + 2!*1!*A(x)^2 + 3!*2!*1!*A(x)^3 + 4!*3!*2!*1!*A(x)^4 +...
Given F(x) is the g.f. of the superfactorials A000178:
F(x) = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 +...
then the table of coefficients in F(x)^n begins:
n=1: [(1), 1, 2, 12, 288, 34560, 24883200, 125411328000, ...];
n=2: [1,(2), 5, 28, 604, 69744, 49836816, 250872567552, ...];
n=3: [1, 3, (9), 49, 954, 105600, 74861864, 376383826368, ...];
n=4: [1, 4, 14, (76), 1345, 142184, 99959432, 501945213632, ...];
n=5: [1, 5, 20, 110,(1785), 179561, 125130690, 627556840100, ...];
n=6: [1, 6, 27, 152, 2283,(217806), 150376901, 753218818212, ...];
n=7: [1, 7, 35, 203, 2849, 257005,(175699433), 878931262217, ...];
n=8: [1, 8, 44, 264, 3494, 297256, 201099772,(1004694288312), ...]; ...
in which the main diagonal generates this sequence:
[1/1, 2/2, 9/3, 76/4, 1785/5, 217806/6, 175699433/7, 1004694288312/8, ...].
PROG
(PARI) {a(n)=polcoeff(1/x*serreverse(x/sum(k=0, n+1, prod(j=0, k, j!)*x^k)+x^2*O(x^n)), n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A132876 A357956 A229832 * A071381 A195639 A195640
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved