login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099750
Molien series for complete weight enumerators of doubly-even Euclidean self-dual codes over the Galois ring GR(4,2).
1
1, 3, 22, 346, 5100, 53504, 411041, 2471091, 12244665, 51924492, 193733585, 649448814, 1988025385, 5628317525, 14888914321, 37110706136, 87756490312, 198017040530, 428428858514, 892492579595, 1796484842799, 3504861873102, 6645228329464, 12273264853180
OFFSET
0,2
LINKS
S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T. Ting, Baxter Permutations, Maj-balances, and Positive Braids, Electronic Journal of Combinatorics, 19(3) (2012), #P26. - From N. J. A. Sloane, Dec 25 2012
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
FORMULA
G.f.: u1/u2 where u1 := f(t^4) + t^156*f(t^-4), u2 := (1-t^4)^3*(1-t^8)^5*(1-t^12)^5*(1-t^20)^3 and
f(t) = 1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19.
MAPLE
f:= unapply(1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19, t):
u1:= f(t) + t^39*f(t^(-1)):
u2:= (1-t)^3*(1-t^2)^5*(1-t^3)^5*(1-t^5)^3:
S:= series(u1/u2, t, 51):
seq(coeff(S, t, j), j=0..50); # Robert Israel, May 02 2016
CROSSREFS
Sequence in context: A002485 A360369 A193193 * A219268 A259919 A275366
KEYWORD
nonn
AUTHOR
G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004
STATUS
approved