login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Molien series for complete weight enumerators of doubly-even Euclidean self-dual codes over the Galois ring GR(4,2).
1

%I #18 May 03 2016 10:33:17

%S 1,3,22,346,5100,53504,411041,2471091,12244665,51924492,193733585,

%T 649448814,1988025385,5628317525,14888914321,37110706136,87756490312,

%U 198017040530,428428858514,892492579595,1796484842799,3504861873102,6645228329464,12273264853180

%N Molien series for complete weight enumerators of doubly-even Euclidean self-dual codes over the Galois ring GR(4,2).

%H Robert Israel, <a href="/A099750/b099750.txt">Table of n, a(n) for n = 0..10000</a>

%H S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T. Ting, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p26/0">Baxter Permutations, Maj-balances, and Positive Braids</a>, Electronic Journal of Combinatorics, 19(3) (2012), #P26. - From _N. J. A. Sloane_, Dec 25 2012

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%F G.f.: u1/u2 where u1 := f(t^4) + t^156*f(t^-4), u2 := (1-t^4)^3*(1-t^8)^5*(1-t^12)^5*(1-t^20)^3 and

%F f(t) = 1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19.

%p f:= unapply(1 + 11*t^2 + 283*t^3 + 4055*t^4 + 37722*t^5 + 243578*t^6 + 1179852*t^7 + 4535052*t^8 + 14380814*t^9 + 38708195*t^10 + 90379766*t^11 + 186147868*t^12 + 342605290*t^13 + 569177435*t^14 + 860160090*t^15+ 1189401593*t^16+ 1511365669*t^17+ 1770220838*t^18+ 1914917488*t^19, t):

%p u1:= f(t) + t^39*f(t^(-1)):

%p u2:= (1-t)^3*(1-t^2)^5*(1-t^3)^5*(1-t^5)^3:

%p S:= series(u1/u2, t, 51):

%p seq(coeff(S,t,j),j=0..50); # _Robert Israel_, May 02 2016

%K nonn

%O 0,2

%A G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004