login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Logarithmic derivative of the superfactorials (A000178).
3

%I #9 Jul 10 2015 07:09:35

%S 1,3,31,1103,171311,149089887,877704854447,40451674467223423,

%T 16514355739866259408591,66586047491662065505372477983,

%U 2923692867015618804999172694908629103,1527767556403309713534536695030930443376591295,10306227067090276816548435451550663056418226402352755215

%N Logarithmic derivative of the superfactorials (A000178).

%C Superfactorial A000178(n) equals the product of first n factorials.

%F a(n) ~ n^(n^2/2 + n + 17/12) * (2*Pi)^((n+1)/2) / (A * exp(3*n^2/4 + n - 1/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Jul 10 2015

%e L.g.f.: L(x) = x + 3*x^2/2 + 31*x^3/3 + 1103*x^4/4 + 171311*x^5/5 +...

%e where

%e exp(L(x)) = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + 125411328000*x^7 +...+ n!*(n-1)!*(n-2)!*...*3!*2!*1!*0!**x^n +...

%t nmax=15; Rest[CoefficientList[Series[Log[Sum[BarnesG[k+2]*x^k,{k,0,nmax}]],{x,0,nmax}],x] * Range[0,nmax]] (* _Vaclav Kotesovec_, Jul 10 2015 *)

%o (PARI) {a(n)=n*polcoeff(log(sum(k=0,n+1,prod(j=0,k,j!)*x^k)+x*O(x^n)),n)}

%o for(n=1,21,print1(a(n),", "))

%Y Cf. A000178, A219267, A219268, A219269.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Nov 16 2012