login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274592
Sum of n-th powers of the roots of x^3 -31* x^2 - 25*x - 1.
3
3, 31, 1011, 32119, 1020995, 32454831, 1031656755, 32793751175, 1042430160131, 33136210400191, 1053316070160371, 33482245865136407, 1064315659783638083, 33831894915991351119, 1075430116136187973171, 34185195288781394584359, 1086660638750543922795523
OFFSET
0,1
COMMENTS
This is one side of a two sided sequence (see A248417).
a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial
x^3 -31* x^2 - 25*x - 1.
x1 = (tan(Pi/7))^2/(tan(2*Pi/7)*tan(4*Pi/7)),
x2 = (tan(2*Pi/7))^2/(tan(4*Pi/7)*tan(Pi/7)),
x3 = (tan(4*Pi/7))^2/(tan(Pi/7)*tan(2*Pi/7)).
FORMULA
a(n) = ((tan(Pi/7))^2/(tan(2*Pi/7)*tan(4*Pi/7)))^n + ((tan(2*Pi/7))^2/(tan(4*Pi/7)*tan(Pi/7)))^n + ((tan(4*Pi/7))^2/(tan(Pi/7)*tan(2*Pi/7)))^n.
a(n) = 31*a(n-1) + 25*a(n-2) + a(n-3).
G.f.: (3-62*x-25*x^2) / (1-31*x-25*x^2-x^3). - Colin Barker, Jun 30 2016
MATHEMATICA
LinearRecurrence[{31, 25, 1}, {3, 31, 1011}, 20] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(PARI) Vec((3-62*x-25*x^2)/(1-31*x-25*x^2-x^3) + O(x^20)) \\ Colin Barker, Jun 30 2016
(PARI) polsym(x^3 -31* x^2 - 25*x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Jun 29 2016
STATUS
approved