OFFSET
0,1
COMMENTS
This is one side of a two sided sequence (see A248417).
a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial
x^3 -31* x^2 - 25*x - 1.
x1 = (tan(Pi/7))^2/(tan(2*Pi/7)*tan(4*Pi/7)),
x2 = (tan(2*Pi/7))^2/(tan(4*Pi/7)*tan(Pi/7)),
x3 = (tan(4*Pi/7))^2/(tan(Pi/7)*tan(2*Pi/7)).
LINKS
Colin Barker, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (31,25,1).
FORMULA
a(n) = ((tan(Pi/7))^2/(tan(2*Pi/7)*tan(4*Pi/7)))^n + ((tan(2*Pi/7))^2/(tan(4*Pi/7)*tan(Pi/7)))^n + ((tan(4*Pi/7))^2/(tan(Pi/7)*tan(2*Pi/7)))^n.
a(n) = 31*a(n-1) + 25*a(n-2) + a(n-3).
G.f.: (3-62*x-25*x^2) / (1-31*x-25*x^2-x^3). - Colin Barker, Jun 30 2016
MATHEMATICA
LinearRecurrence[{31, 25, 1}, {3, 31, 1011}, 20] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(PARI) Vec((3-62*x-25*x^2)/(1-31*x-25*x^2-x^3) + O(x^20)) \\ Colin Barker, Jun 30 2016
(PARI) polsym(x^3 -31* x^2 - 25*x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Jun 29 2016
STATUS
approved