login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.
0

%I #3 Mar 30 2012 17:34:23

%S 2,-2,1,1,6,0,-8,0,1,-48,-5,87,1,-20,0,1,392,0,-984,0,346,0,-35,0,1,

%T -3840,33,12645,-14,-6090,1,938,0,-54,0,1,46032,0,-187338,0,114745,0,

%U -23813,0,2070,0,-77,0,1,-645120,-279,3133935,185,-2336040,-27,611415,1,-71280,0,3993,0,-104,0,1,10322304,0,-58438830,0

%N Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.

%C Row sums are:

%C {2, 0, -1, 16, -280, 3620, -48380, 696680, -10740280, 175631200, -3000871600}

%C The double function Integration is not orthogonal:

%C Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];

%C Both types have the polynomial:

%C p[x]=6 - 8 x^2 + x^4

%C Original Hermite has:

%C p[x]=8 - 9 x^2 + x^4

%C Integration of these as:

%C f[y_] = Integrate[Exp[ -x^2/4]*p[x], {x, Infinity, y}]

%C g[z_] = Integrate[Exp[ -y^2/4]*f[y], {y, Infinity, z}]

%C gives three level or four level curves with negative limit of 2*Pi.

%F H2(x,n)=A137286(x,n)+A137286(x,2*n)

%e {2},

%e {-2, 1, 1},

%e {6, 0, -8, 0, 1},

%e {-48, -5, 87,1, -20, 0, 1},

%e {392, 0, -984, 0, 346, 0, -35, 0, 1},

%e {-3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1},

%e {46032, 0, -187338, 0,114745, 0, -23813, 0, 2070, 0, -77, 0, 1},

%e {-645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0,3993, 0, -104,0, 1},

%e {10322304, 0, -58438830, 0, 51450870, 0, -16289000, 0, 2386396, 0, -178893, 0, 7007, 0, -135, 0, 1},

%e {-185794560, 2895, 1203216525, -2640, -1223803350,

%e 588, 455259420, -44, -80424630, 1, 7561554, 0, -395850, 0, 11460, 0, -170,

%e 0, 1},

%e {3715887360, 0, -27125479980, 0, 31335461535, 0, -13408093762, 0, 2775672846, 0,-314143829, 0, 20603310, 0, -796620, 0, 17748, 0, -209, 0, 1}

%t P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, 2*n]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]

%Y Cf. A137286.

%K uned,tabl,sign

%O 1,1

%A _Roger L. Bagula_, Mar 30 2008