OFFSET
1,2
COMMENTS
Inverse Möbius transform of square pyramidal numbers (A000330).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
N. J. A. Sloane, Transforms.
FORMULA
G.f.: Sum_{k>=1} A000330(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d*(d + 1)*(2*d + 1)/6.
a(n) = Sum_{i=1..n} i^2*A135539(n,i). - Ridouane Oudra, Jul 22 2022
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: zeta(s) * (2*zeta(s-3) + 3*zeta(s-2) + zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/12) * n^4. (End)
MAPLE
a:=series(add(x^k*(1+x^k)/(1-x^k)^4, k=1..100), x=0, 48): seq(coeff(a, x, n), n=1..47); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 47; Rest[CoefficientList[Series[Sum[x^k (1 + x^k)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[d (d + 1) (2 d + 1)/6, {d, Divisors[n]}], {n, 47}]
Table[(DivisorSigma[1, n] + 3 DivisorSigma[2, n] + 2 DivisorSigma[3, n])/6, {n, 47}]
PROG
(PARI) a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 2) + sigma(f, 1)) / 6; \\ Amiram Eldar, Jan 03 2025
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Oct 24 2018
STATUS
approved