login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147960 a(n) = ((9 + sqrt(2))^n + (9 - sqrt(2))^n)/2. 4
1, 9, 83, 783, 7537, 73809, 733139, 7365591, 74662657, 762046137, 7818480563, 80531005311, 831898131121, 8612216940609, 89299952572403, 927034007995143, 9631915890692737, 100138799400852969, 1041577033850627219 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A147959. 9th binomial transform of A077957. - Philippe Deléham, Nov 30 2008

Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..980

Index entries for linear recurrences with constant coefficients, signature (18, -79).

FORMULA

From Philippe Deléham, Nov 19 2008: (Start)

a(n) = 18*a(n-1) - 79*a(n-2), n > 1; a(0)=1, a(1)=9.

G.f.: (1 - 9*x)/(1 - 18*x + 79*x^2).

a(n) = (Sum_{k=0..n} A098158(n,k)*9^(2k)*2^(n-k))/9^n. (End)

E.g.f.: exp(9*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017

MATHEMATICA

LinearRecurrence[{18, -79}, {1, 9}, 50] (* G. C. Greubel, Aug 17 2018 *)

PROG

(Magma) Z<x>:= PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ ((9+r2)^n+(9-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008

(PARI) x='x+O('x^30); Vec((1-9*x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 17 2018

CROSSREFS

Cf. A077957, A098158, A147959.

Sequence in context: A037679 A015579 A162759 * A155499 A321294 A242596

Adjacent sequences: A147957 A147958 A147959 * A147961 A147962 A147963

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008

EXTENSIONS

Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 19:36 EST 2022. Contains 358703 sequences. (Running on oeis4.)