login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147960
a(n) = ((9 + sqrt(2))^n + (9 - sqrt(2))^n)/2.
4
1, 9, 83, 783, 7537, 73809, 733139, 7365591, 74662657, 762046137, 7818480563, 80531005311, 831898131121, 8612216940609, 89299952572403, 927034007995143, 9631915890692737, 100138799400852969, 1041577033850627219
OFFSET
0,2
COMMENTS
Binomial transform of A147959. 9th binomial transform of A077957. - Philippe Deléham, Nov 30 2008
Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
FORMULA
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 18*a(n-1) - 79*a(n-2), n > 1; a(0)=1, a(1)=9.
G.f.: (1 - 9*x)/(1 - 18*x + 79*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*9^(2k)*2^(n-k))/9^n. (End)
E.g.f.: exp(9*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017
MATHEMATICA
LinearRecurrence[{18, -79}, {1, 9}, 50] (* G. C. Greubel, Aug 17 2018 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ ((9+r2)^n+(9-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
(PARI) x='x+O('x^30); Vec((1-9*x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008
STATUS
approved