Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:38
%S 1,9,83,783,7537,73809,733139,7365591,74662657,762046137,7818480563,
%T 80531005311,831898131121,8612216940609,89299952572403,
%U 927034007995143,9631915890692737,100138799400852969,1041577033850627219
%N a(n) = ((9 + sqrt(2))^n + (9 - sqrt(2))^n)/2.
%C Binomial transform of A147959. 9th binomial transform of A077957. - _Philippe Deléham_, Nov 30 2008
%C Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - _Philippe Deléham_, Dec 04 2008
%H G. C. Greubel, <a href="/A147960/b147960.txt">Table of n, a(n) for n = 0..980</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18, -79).
%F From _Philippe Deléham_, Nov 19 2008: (Start)
%F a(n) = 18*a(n-1) - 79*a(n-2), n > 1; a(0)=1, a(1)=9.
%F G.f.: (1 - 9*x)/(1 - 18*x + 79*x^2).
%F a(n) = (Sum_{k=0..n} A098158(n,k)*9^(2k)*2^(n-k))/9^n. (End)
%F E.g.f.: exp(9*x)*cosh(sqrt(2)*x). - _Ilya Gutkovskiy_, Aug 11 2017
%t LinearRecurrence[{18, -79}, {1, 9}, 50] (* _G. C. Greubel_, Aug 17 2018 *)
%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ ((9+r2)^n+(9-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Nov 19 2008
%o (PARI) x='x+O('x^30); Vec((1-9*x)/(1-18*x+79*x^2)) \\ _G. C. Greubel_, Aug 17 2018
%Y Cf. A077957, A098158, A147959.
%K nonn
%O 0,2
%A Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
%E Extended beyond a(6) by _Klaus Brockhaus_, Nov 19 2008