|
|
A147958
|
|
a(n) = ((7 + sqrt(2))^n + (7 - sqrt(2))^n)/2.
|
|
4
|
|
|
1, 7, 51, 385, 2993, 23807, 192627, 1577849, 13036417, 108350935, 904201491, 7566326929, 63431106929, 532418131343, 4472591813139, 37592633210825, 316085049734017, 2658336935367463, 22360719757645683, 188108240644768801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 14*a(n-1) - 47*a(n-2), n > 1; a(0)=1, a(1)=7.
G.f.: (1 - 7*x)/(1 - 14*x + 47*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*7^(2k)*2^(n-k))/7^n. (End)
|
|
MATHEMATICA
|
LinearRecurrence[{14, -47}, {1, 7}, 50] (* G. C. Greubel, Aug 17 2018 *)
|
|
PROG
|
(Magma) Z<x>:= PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ ((7+r2)^n+(7-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
(PARI) x='x+O('x^30); Vec((1-7*x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 17 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|