login
A020531
a(n) = 5th Fibonacci polynomial evaluated at 2^n.
2
5, 29, 305, 4289, 66305, 1051649, 16789505, 268484609, 4295163905, 68720263169, 1099514773505, 17592198627329, 281475027042305, 4503599828697089, 72057594843234305, 1152921507828072449, 18446744086594453505, 295147905230892433409, 4722366483075803643905
OFFSET
0,1
FORMULA
From Colin Barker, May 03 2015: (Start)
a(n) = 1 + 3*4^n + 16^n.
a(n) = 21*a(n-1) - 84*a(n-2) + 64*a(n-3) for n > 2.
G.f.: -(116*x^2 - 76*x + 5)/((x - 1)*(4*x - 1)*(16*x - 1)). (End)
E.g.f.: exp(x)*(1 + 3*exp(3*x) + exp(15*x)). - Stefano Spezia, Jul 31 2022
MAPLE
with(combinat, fibonacci):seq(fibonacci(5, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[5, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(PARI) Vec(-(116*x^2-76*x+5)/((x-1)*(4*x-1)*(16*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A332517 A332469 A112799 * A195228 A226668 A226666
KEYWORD
nonn,easy
AUTHOR
STATUS
approved