login
A020532
a(n) = 6th Fibonacci polynomial evaluated at 2^n.
1
8, 70, 1292, 34840, 1065008, 33685600, 1074790592, 34368127360, 1099578737408, 35184908961280, 1125904201812992, 36028831378708480, 1152921779484766208, 36893490346442383360, 1180591638309597396992, 37778932003694650163200, 1208925820740529081745408
OFFSET
0,1
FORMULA
From Colin Barker, May 03 2015: (Start)
a(n) = 2^n*(3+4^(1+n)+16^n).
a(n) = 42*a(n-1)-336*a(n-2)+512*a(n-3) for n>2.
G.f.: -2*(520*x^2-133*x+4) / ((2*x-1)*(8*x-1)*(32*x-1)).
(End)
MAPLE
with(combinat, fibonacci):seq(fibonacci(6, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[6, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{42, -336, 512}, {8, 70, 1292}, 20] (* Harvey P. Dale, Aug 04 2023 *)
PROG
(PARI) Vec(-2*(520*x^2-133*x+4)/((2*x-1)*(8*x-1)*(32*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A266433 A267244 A228388 * A043086 A003364 A376053
KEYWORD
nonn,easy
AUTHOR
STATUS
approved