login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020532
a(n) = 6th Fibonacci polynomial evaluated at 2^n.
1
8, 70, 1292, 34840, 1065008, 33685600, 1074790592, 34368127360, 1099578737408, 35184908961280, 1125904201812992, 36028831378708480, 1152921779484766208, 36893490346442383360, 1180591638309597396992, 37778932003694650163200, 1208925820740529081745408
OFFSET
0,1
FORMULA
From Colin Barker, May 03 2015: (Start)
a(n) = 2^n*(3+4^(1+n)+16^n).
a(n) = 42*a(n-1)-336*a(n-2)+512*a(n-3) for n>2.
G.f.: -2*(520*x^2-133*x+4) / ((2*x-1)*(8*x-1)*(32*x-1)).
(End)
MAPLE
with(combinat, fibonacci):seq(fibonacci(6, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[6, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{42, -336, 512}, {8, 70, 1292}, 20] (* Harvey P. Dale, Aug 04 2023 *)
PROG
(PARI) Vec(-2*(520*x^2-133*x+4)/((2*x-1)*(8*x-1)*(32*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A266433 A267244 A228388 * A043086 A003364 A376053
KEYWORD
nonn,easy
AUTHOR
STATUS
approved