login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020530
a(n) = 8^n + 2^(n+1).
1
3, 12, 72, 528, 4128, 32832, 262272, 2097408, 16777728, 134218752, 1073743872, 8589938688, 68719484928, 549755830272, 4398046543872, 35184372154368, 281474976841728, 2251799813947392, 18014398510006272
OFFSET
0,1
COMMENTS
4th Fibonacci polynomial evaluated at 2^n.
FORMULA
G.f. 3*(1-6*x)/((8*x-1)*(2*x-1)). - R. J. Mathar, Jun 07 2016
a(n) = 3*A103334(n+1). - R. J. Mathar, Jun 07 2016
E.g.f.: (2 + exp(6*x))*exp(2*x). - Ilya Gutkovskiy, Jun 07 2016
MAPLE
with(combinat, fibonacci):seq(fibonacci(4, 2**i), i=0..24);
MATHEMATICA
Table[Fibonacci[4, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{10, -16}, {3, 12}, 30] (* Harvey P. Dale, May 04 2018 *)
PROG
(Magma) [8^n + 2^(n+1): n in [0..30]]; // Vincenzo Librandi, Apr 26 2011
CROSSREFS
Sequence in context: A175836 A293138 A319948 * A337061 A147998 A052676
KEYWORD
nonn,easy
AUTHOR
STATUS
approved