The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2. 2
 1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..3000 FORMULA G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n). a(p^k) = A007018(k) for p prime. From Bernard Schott, Apr 24 2021: (Start) a(A006881(n)) = 10 for signature [1, 1]. a(A054753(n)) = 146 for signature [2, 1]. a(A007304(n)) = 314 for signature [1, 1, 1]. a(A065036(n)) = 23226 for signature [3, 1]. a(A085986(n)) = 42814 for signature [2, 2]. a(A085987(n)) = 141578 for signature [2, 1, 1]. (End) MAPLE a:= proc(n) option remember;       1+add(a(d)^2, d=numtheory[divisors](n) minus {n})     end: seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021 MATHEMATICA a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}] PROG (Python) from functools import lru_cache from sympy import divisors @lru_cache(maxsize=None) def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021 (PARI) lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 14:43 EDT 2021. Contains 346346 sequences. (Running on oeis4.)