login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2. 2
1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..3000

Index entries for sequences related to prime signature

FORMULA

G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n).

a(p^k) = A007018(k) for p prime.

From Bernard Schott, Apr 24 2021: (Start)

a(A006881(n)) = 10 for signature [1, 1].

a(A054753(n)) = 146 for signature [2, 1].

a(A007304(n)) = 314 for signature [1, 1, 1].

a(A065036(n)) = 23226 for signature [3, 1].

a(A085986(n)) = 42814 for signature [2, 2].

a(A085987(n)) = 141578 for signature [2, 1, 1]. (End)

MAPLE

a:= proc(n) option remember;

      1+add(a(d)^2, d=numtheory[divisors](n) minus {n})

    end:

seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021

MATHEMATICA

a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]

PROG

(Python)

from functools import lru_cache

from sympy import divisors

@lru_cache(maxsize=None)

def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021

(PARI) lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (d<n, va[d]^2)); ); va; } \\ Michel Marcus, Apr 18 2021

CROSSREFS

Cf. A025487, A006881, A007018, A007304, A067824, A082588, A333120.

Sequence in context: A154009 A297792 A266722 * A232625 A099985 A298299

Adjacent sequences:  A343508 A343509 A343510 * A343512 A343513 A343514

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 17 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 14:43 EDT 2021. Contains 346346 sequences. (Running on oeis4.)