login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
14

%I #46 Jan 29 2024 11:02:29

%S 1,1,3,1,5,5,1,9,11,8,1,17,29,22,9,1,33,83,74,29,15,1,65,245,274,129,

%T 55,13,1,129,731,1058,629,261,55,20,1,257,2189,4162,3129,1411,349,92,

%U 21,1,513,6563,16514,15629,8085,2407,596,105,27,1,1025,19685,65794,78129,47515,16813,4388,789,145,21

%N Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.

%H Seiichi Manyama, <a href="/A343510/b343510.txt">Antidiagonals n = 1..140, flattened</a>

%H Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a> and <a href="http://mathworld.wolfram.com/EulersNumberTriangle.html">Euler's Number Triangle</a>

%F G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).

%F T(n,k) = Sum_{d|n} phi(n/d) * d^k.

%F T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).

%F Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - _Ilya Gutkovskiy_, Apr 18 2021

%F T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - _Richard L. Ollerton_, May 10 2021

%F T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - _Peter Bala_, Jan 29 2024

%e G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 3, 5, 9, 17, 33, 65, 129, ...

%e 5, 11, 29, 83, 245, 731, 2189, ...

%e 8, 22, 74, 274, 1058, 4162, 16514, ...

%e 9, 29, 129, 629, 3129, 15629, 78129, ...

%e 15, 55, 261, 1411, 8085, 47515, 282381, ...

%e 13, 55, 349, 2407, 16813, 117655, 823549, ...

%t T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Apr 18 2021 *)

%o (PARI) T(n, k) = sum(j=1, n, gcd(j, n)^k);

%o (PARI) T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);

%o (PARI) T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));

%Y Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.

%Y T(n-2,n) gives A342432.

%Y T(n-1,n) gives A342433.

%Y T(n,n) gives A332517.

%Y T(n,n+1) gives A321294.

%Y Cf. A008292, A343516.

%K nonn,tabl,easy

%O 1,3

%A _Seiichi Manyama_, Apr 17 2021