GCD sum theorems. Two Multivariable Cesáro Type Identities

Peter Bala, Jan 2024

The purpose of these notes is to record a multivariable generalisation of Cesáro's identity (1) and a multivariable generalisation of its companion identity (2). These two results are probably in the literature, although I haven't been able to locate a reference; for the convenience of users of the OEIS I have written up the proofs. Using these results we give a pair of gcd summation identities in Section 4.

1. Introduction.

Let $f(n)$ be an arithmetical function. Cesáro gave the identity

$$
\begin{equation*}
\sum_{k=1}^{n} f(\operatorname{gcd}(k, n))=\sum_{d \mid n} f(d) \phi\left(\frac{n}{d}\right) \tag{1}
\end{equation*}
$$

where $\phi(n)$ denotes Euler's totient function. For a compact one-line proof see O. BORDELLES [1, Lemma 1].

A companion result to (1), which can be proved in a similar manner, is

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(\frac{n}{\operatorname{gcd}(k, n)}\right)=\sum_{d \mid n} f(d) \phi(d) \tag{2}
\end{equation*}
$$

A particularly interesting case of (1) is when f is a multiplicative function. Then the right-hand side of (1) is the Dirichlet convolution of two multiplicative functions and hence is also multiplicative. Examples in the OEIS include Pillai's arithmetical function A018804 $(f(n)=1)$, A069097 $\left(f(n)=n^{2}\right)$, A343497 $\left(f(n)=n^{3}\right)$, A343498 $\left(f(n)=n^{4}\right)$, A343499 $\left(f(n)=n^{5}\right), \operatorname{A029935}(f(n)=\phi(n)), A 007434\left(\right.$ either $\left.f(n)=\phi\left(n^{2}\right)\right)$ or $(f(n)=n \phi(n)), \operatorname{A342534}\left(f(n)=\phi(n)^{2}\right), \operatorname{A007431}(f(n)=m u(n)), \mathrm{A} 063659$ $\left(f(n)=m u(n)^{2}\right), \operatorname{A008683}(f(n)=n * m u(n)), \operatorname{A078439}\left(f(n)=n * m u(n)^{2}\right)$, A300717 $(f(n)=m u(n) * \phi(n)), A 191356\left(f(n)=(-1)^{n+1}\right)$, A332794 $\left(f(n)=(-1)^{n+1} n\right), \operatorname{A000203}(f(n)=\tau(n)), \operatorname{A060724}\left(f(n)=\tau(n)^{2}\right)$, A344132 $\left(f(n)=\tau(n)^{3}\right)$, A344138 $\left(f(n)=\tau(n)^{4}\right)$, A344139 $\left(f(n)=\tau(n)^{5}\right)$, A060648 $\left(f(n)=\tau\left(n^{2}\right)\right)$, A344321 $\left(f(n)=\tau\left(n^{3}\right)\right)$, A344322 $\left(f(n)=\tau\left(n^{4}\right)\right)$, $\overline{\mathrm{A} 038040}(f(n)=\sigma(n)), \operatorname{A064987}\left(f(n)=\sigma_{2}(n)\right), \operatorname{A328259}\left(f(n)=\sigma_{3}(n)\right)$, $\overline{\mathrm{A} 281372}\left(f(n)=\sigma_{4}(n)\right), \mathrm{A} 341772\left(f(n)=J_{2}(n)\right), \operatorname{A059376}\left(f(n)=n * J_{2}(n)\right)$ and $\operatorname{A176345}(f(n)=\operatorname{rad}(n))$.

Particular cases in the OEIS of the companion identity (2) include A057660

$$
\begin{aligned}
& (f(n)=n), \operatorname{A068963}\left(f(n)=n^{2}\right), \operatorname{A068970}\left(f(n)=n^{3}\right), \operatorname{A368744} \\
& \left(f(n)=(-1)^{n+1}\right), \operatorname{A332845}\left(f(n)=(-1)^{\omega(n)}\right), \operatorname{A029939(f(n)=\phi (n)),} \\
& \mathrm{A} 338997 \\
& \mathrm{~A} 007947 \\
& \left(f(n)=\phi^{2}(n)\right), \operatorname{A342470}\left(f(n)=\phi^{3}(n)\right), \mathrm{A} 276833(f(n)=m u(n)), \\
& (f(n)=\sigma(n)) .
\end{aligned}
$$

Our generalisations of (1) and (2) involve the Jordan totient functions. We recall some of the basic properties of these arithmetical functions.
2. Jordan totient functions. Let $[n]=\{1,2, \ldots, n\}$. For a positive integer r, the Jordan totient function $J_{r}(n)$ gives the number of r-tuples $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$, such that each $k_{i} \in[n]$ and $\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{r}, n\right)=1$:

$$
J_{r}(n)=\sum_{\substack{k_{i} \in[n] \\ \operatorname{gcd}\left(k_{1}, k_{2}, . ., k_{r}, n\right)=1}} 1
$$

In particular, $J_{1}(n)=\phi(n)$, so the Jordan totient functions generalise Euler's totient function.

The function $J_{r}(n)$ is a multiplicative function of n since it can be expressed as the Dirichlet convolution of the multplicative functions n^{r} and the mobius function $\mu(n)$,

$$
J_{r}(n)=\sum_{d \mid n} d^{r} m u\left(\frac{n}{d}\right)
$$

It follows that the function J_{r} has the Dirichlet generating function (D.g.f.)

$$
\begin{equation*}
\sum_{n \geq 1} \frac{J_{r}(n)}{n^{s}}=\zeta(s-r) / \zeta(s), \quad \operatorname{Re}(s)>r+1 \tag{3}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta function.

The value of the totient function on prime powers is given by

$$
J_{r}\left(p^{k}\right)=p^{r k}-p^{r(k-1)}
$$

3. Generalised Cesáro identities.

The proof of Cesáro's identity (1) easily generalises to the following multivariable identity.

Theorem 1. Let f be an arithmetical function. Then

$$
\sum_{k_{i} \in[n]} f\left(\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{r}, n\right)\right)=\sum_{d \mid n} f(d) J_{r}(n / d) .
$$

Proof. We prove the theorem only in the case $r=2$. The reader should have little trouble in extending the proof to the general case.

Let A_{n} denote the Cartesian product $[n] \mathrm{X}[n]$. For each positive integer d, a divisor of n, we define a subset A_{d} of A_{n} by

$$
\begin{equation*}
A_{d}=\{(i, j): i, j \in[n] \text { and } \operatorname{gcd}(i, j, n)=d\} \tag{4}
\end{equation*}
$$

Clearly, A_{n} is the disjoint union of the subsets A_{d} taken over all the divisors of n :

$$
A_{n}=\sqcup_{d \mid n} A_{d}
$$

The function f takes the constant value $f(d)$ on A_{d}. Hence

$$
\begin{equation*}
\sum_{i, j \in[n]} f(\operatorname{gcd}(i, j, n))=\sum_{d \mid n} f(d)\left|A_{d}\right| . \tag{5}
\end{equation*}
$$

We determine the cardinality $\left|A_{d}\right|$ of the set A_{d}.

For each pair $(i, j) \in A_{d}$ both i and j are divisible by d, say $i=d y$ and $j=d z$. Now $\operatorname{gcd}(i, j, n)=\operatorname{gcd}(d y, d z, n)=d$ if and only if $\operatorname{gcd}(y, z, n / d)=1$.
Furthermore, $1 \leq d y \leq n$ and $1 \leq d z \leq n$ if and only if $1 \leq y \leq n / d$ and $1 \leq z \leq n / d$.

Therefore, from (4),

$$
A_{d}=\{(d y, d z): 1 \leq y \leq n / d, 1 \leq z \leq n / d \text { and } \operatorname{gcd}(y, z, n / d)=1\}
$$

It follows from the definition of the Jordan totient function J_{2} that the cardinality of A_{d} is $J_{2}(n / d)$.

Hence, by (5),

$$
\sum_{k_{i} \in[n]} f\left(\operatorname{gcd}\left(k_{1}, k_{2}, n\right)\right)=\sum_{d \mid n} f(d) J_{2}\left(\frac{n}{d}\right)
$$

completing the proof of the Theorem in the case $r=2$.

Corollary 1. If $f(n)$ is a multiplicative function then the gcd sum $\sum_{k_{i} \in[n]} f\left(\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{r}, n\right)\right)$ is also a multiplicative function of n.

Examples 3.1. A129194 $\left(r=2, f(n)=(-1)^{n+1}\right)$, A341772
$(r=2, f(n)=\phi(n)), A 321322(r=2, f(n)=\mu(n)), A 158949$
$\left(r=2, f(n)=\tau\left(n^{2}\right)\right), A 001158(r=3, f(n)=\tau(n)), A 001159$
$(r=4, f(n)=\tau(n)), \mathrm{A} 001160(r=5, f(n)=\tau(n)), \mathrm{A} 281372$
$\left(r=4, f(n)=\sigma_{1}(n)\right)$, A282097 $\left(r=3, f(n)=\sigma_{2}(n)\right)$.

Next we give a multivariable extension of the companion identity (2) to Cesáro's identity.

Theorem 2. Let f be an arithmetical function. Then

$$
\sum_{k_{i} \in[n]} f\left(\frac{n}{\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{r}, n\right)}\right)=\sum_{d \mid n} f(d) J_{r}(d) .
$$

Proof. As in Theorem1 we prove the theorem only in the case $r=2$ (this particular case of the theorem has been observed by Werner Schulte - see his comment in A350156). The extension of the theorem to the general case is straightforward.

For each positive integer d, a divisor of n, we define the codivisor $d^{\prime}=n / d$. We define the subset $A_{d^{\prime}}$ of the Cartesian product $A_{n}=[n] \mathrm{X}[n]$ by

$$
A_{d^{\prime}}=\left\{(i, j): i, j \in[n] \text { and } \operatorname{gcd}(i, j, n)=d^{\prime}\right\}
$$

Clearly, A_{n} is the disjoint union of the subsets $A_{d^{\prime}}$ taken over all the divisors d of n :

$$
A_{n}=\sqcup_{d \mid n} A_{d^{\prime}}
$$

One checks that the function f takes the constant value $f(d)$ on A_{d}^{\prime}. Hence

$$
\begin{equation*}
\sum_{i, j \in[n]} f\left(\frac{n}{\operatorname{gcd}(i, j, n)}\right)=\sum_{d \mid n} f(d)\left|A_{d^{\prime}}\right| \tag{6}
\end{equation*}
$$

In Theorem 1 we showed that $\left|A_{d^{\prime}}\right|$ is equal to $J_{2}\left(n / d^{\prime}\right)=J_{2}(d)$.

Hence by (6)

$$
\sum_{i, j \in[n]} f\left(\frac{n}{\operatorname{gcd}(i, j, n)}\right)=\sum_{d \mid n} f(d) J_{2}(d)
$$

completing the proof of the Theorem in the case $r=2$.
Examples 3.2. $\mathrm{A} 084218\left(r=2, f(n)=n^{2}\right)$ and A 078615 $\left(r=2, f(n)=\mu(n)^{2}\right)$.

4. Two GCD sum identities.

One easy consequence of Theorem 1 is the following pretty identity for gcd sums.

Theorem 3. For positive integers i and j,

$$
\begin{equation*}
\sum_{k^{\prime} s \in[n]} \operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{i}, n\right)^{j}=\sum_{k^{\prime} s \in[n]} \operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{j}, n\right)^{i} . \tag{7}
\end{equation*}
$$

Proof. We show that the arithmetic functions on both sides of (7) have the same D.g.f.'s on a region of the complex plane. The theorem then follows by the uniqueness of the coefficients of a Dirichlet series convergent in an open domain of \mathbb{C}.

By Theorem 1, the left-hand side of (7) is equal to the divisor sum

$$
\begin{equation*}
\sum_{d \mid n} d^{j} J_{i}(n / d) \tag{8}
\end{equation*}
$$

the Dirichlet convolution $n^{j} \star J_{i}$. The D.g.f. of n^{j} is $\zeta(s-j)$ and hence by (3) the D.g.f. of the left-hand side of (7) is $\zeta(s-j) \frac{\zeta(s-i)}{\zeta(s)}$, convergent in the half-plane $\operatorname{Re}(s)>\max (i, j)+1$.

Again by Theorem 1, the right-hand side of (7) is equal to the divisor sum

$$
\sum_{d \mid n} d^{i} J_{j}(n / d)
$$

the Dirichlet convolution $N^{i} \star J_{j}$, with D.g.f. $\zeta(s-i) \frac{\zeta(s-j)}{\zeta(s)}$, the same as the D.g.f. of the left-hand side of (7).

Examples 4.1. A069097 $(i=2, j=1), \operatorname{A343497}(i=3, j=1)$, A343498 $(i=4, j=1)$ and A368743 $(i=2, j=3)$.

We conclude with a second identity for gcd sums involving the sum of divisors function σ_{k}, defined by

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

The function σ_{k} is a multiplicative function of n with D.g.f. $\zeta(s) \zeta(s-k)$, convergent for $\operatorname{Re}(s)>k+1$ when $k \geq 0$.

Theorem 4. For positive integers i and j,

$$
\begin{equation*}
\sum_{k^{\prime} s \in[n]} \sigma_{i}\left(\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{j}\right)\right)=\sum_{k^{\prime} s \in[n]} \sigma_{j}\left(\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{i}\right)\right) \tag{9}
\end{equation*}
$$

Sketchproof. Exactly similar to the proof of Theorem 3. One uses Theorem 1 to express the left-hand and right-hand sides of (9) as Dirichlet convolutions and then show that their corresponding D.g.f.'s are equal on a half-plane of \mathbb{C}.

Examples 4.2. A064987 $(i=1, j=2), \mathrm{A} 328259(i=1, j=3), \mathrm{A} 281372$ $(i=1, j=4)$ and A282097 $(i=2, j=3)$.

References

[1] OLIVIER BORDELLES, A Multidimensional Cesaro Type Identity and Applications, J. Int. Seq. 18 (2015) \# 15.3.7.
[2] WIKIPEDIA, Divisor function
[3] WIKIPEDIA, Jordan's totient function

