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The purpose of these notes is to record a multivariable generalisation of
Cesáro's identity (1) and a multivariable generalisation of its companion
identity (2). These two results are probably in the literature, although I
haven't been able to locate a reference; for the convenience of users of the
OEIS I have written up the proofs. Using these results we give a pair of gcd
summation identities in Section 4.

1. Introduction.

Let f(n) be an arithmetical function. Cesáro gave the identity

n∑
k=1

f (gcd(k, n)) =
∑
d|n

f(d)φ

(
n

d

)
, (1)

where φ(n) denotes Euler's totient function. For a compact one-line proof see
O. BORDELLES [1, Lemma 1].

A companion result to (1), which can be proved in a similar manner, is

n∑
k=1

f

(
n

gcd(k, n)

)
=
∑
d|n

f(d)φ (d). (2)

A particularly interesting case of (1) is when f is a multiplicative function.
Then the right-hand side of (1) is the Dirichlet convolution of two
multiplicative functions and hence is also multiplicative. Examples in the
OEIS include Pillai's arithmetical function A018804 (f(n) = 1), A069097
(f(n) = n2), A343497 (f(n) = n3), A343498 (f(n) = n4), A343499
(f(n) = n5), A029935 (f(n) = φ(n)), A007434 (either f(n) = φ(n2)) or
(f(n) = nφ(n)) , A342534 (f(n) = φ(n)2), A007431 (f(n) = mu(n)), A063659
(f(n) = mu(n)2), A008683 (f(n) = n ∗mu(n)), A078439 (f(n) = n ∗mu(n)2),
A300717 (f(n) = mu(n) ∗ φ(n)), A191356 (f(n) = (−1)n+1), A332794(
f(n) = (−1)n+1n

)
, A000203 (f(n) = τ(n)), A060724

(
f(n) = τ(n)2

)
,

A344132
(
f(n) = τ(n)3

)
, A344138

(
f(n) = τ(n)4

)
, A344139

(
f(n) = τ(n)5

)
,

A060648
(
f(n) = τ(n2)

)
, A344321

(
f(n) = τ(n3)

)
, A344322

(
f(n) = τ(n4)

)
,

A038040 (f(n) = σ(n)), A064987 (f(n) = σ2(n)), A328259 (f(n) = σ3(n)),
A281372 (f(n) = σ4(n)), A341772 (f(n) = J2(n)), A059376 (f(n) = n ∗ J2(n))
and A176345 (f(n) = rad(n)).
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Particular cases in the OEIS of the companion identity (2) include A057660
(f(n) = n) , A068963

(
f(n) = n2

)
, A068970

(
f(n) = n3

)
, A368744(

f(n) = (−1)n+1
)
, A332845

(
f(n) = (−1)ω(n)

)
, A029939 (f(n) = φ(n)) ,

A338997
(
f(n) = φ2(n)

)
, A342470

(
f(n) = φ3(n)

)
, A276833 (f(n) = mu(n)) ,

A007947
(
f(n) = mu2(n)

)
, A062949 (f(n) = τ(n)) and A062952

(f(n) = σ(n)) .

Our generalisations of (1) and (2) involve the Jordan totient functions. We
recall some of the basic properties of these arithmetical functions.

2. Jordan totient functions. Let [n] = {1, 2, ..., n}. For a positive integer
r, the Jordan totient function Jr(n) gives the number of r-tuples
(k1, k2, ..., kr), such that each ki ∈ [n] and gcd(k1, k2, ..., kr, n) = 1:

Jr(n) =
∑

ki ∈ [n]
gcd(k1, k2, .., kr, n) = 1

1.

In particular, J1(n) = φ(n), so the Jordan totient functions generalise Euler's
totient function.

The function Jr(n) is a multiplicative function of n since it can be expressed
as the Dirichlet convolution of the multplicative functions nr and the mobius
function µ(n),

Jr(n) =
∑
d|n

drmu

(
n

d

)
.

It follows that the function Jr has the Dirichlet generating function (D.g.f.)

∑
n≥1

Jr(n)

ns
= ζ(s− r)/ζ(s), Re(s) > r + 1, (3)

where ζ(s) is the Riemann zeta function.

The value of the totient function on prime powers is given by

Jr
(
pk
)

= prk − pr(k−1).

3. Generalised Cesáro identities.

The proof of Cesáro's identity (1) easily generalises to the following
multivariable identity.
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Theorem 1. Let f be an arithmetical function. Then∑
ki∈[n]

f (gcd (k1, k2, . . . , kr, n)) =
∑
d|n

f(d)Jr(n/d) .

Proof. We prove the theorem only in the case r = 2. The reader should have
little trouble in extending the proof to the general case.

Let An denote the Cartesian product [n] X [n]. For each positive integer d, a
divisor of n, we de�ne a subset Ad of An by

Ad = {(i, j) : i, j ∈ [n] and gcd(i, j, n) = d} . (4)

Clearly, An is the disjoint union of the subsets Ad taken over all the divisors of
n:

An = td|nAd .

The function f takes the constant value f(d) on Ad. Hence∑
i,j∈[n]

f (gcd (i, j, n)) =
∑
d|n

f(d)|Ad| . (5)

We determine the cardinality |Ad| of the set Ad.

For each pair (i, j) ∈ Ad both i and j are divisible by d, say i = dy and j = dz.
Now gcd(i, j, n) = gcd(dy, dz, n) = d if and only if gcd(y, z, n/d) = 1.
Furthermore, 1 ≤ dy ≤ n and 1 ≤ dz ≤ n if and only if 1 ≤ y ≤ n/d and
1 ≤ z ≤ n/d.

Therefore, from (4),

Ad = {(dy, dz) : 1 ≤ y ≤ n/d, 1 ≤ z ≤ n/d and gcd(y, z, n/d) = 1} .

It follows from the de�nition of the Jordan totient function J2 that the
cardinality of Ad is J2(n/d).

Hence, by (5),

∑
ki∈[n]

f (gcd (k1, k2, n)) =
∑
d|n

f(d)J2

(
n

d

)
,

completing the proof of the Theorem in the case r = 2.�

Corollary 1. If f(n) is a multiplicative function then the gcd sum∑
ki∈[n]

f (gcd (k1, k2, . . . , kr, n)) is also a multiplicative function of n.�
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Examples 3.1. A129194
(
r = 2, f(n) = (−1)n+1

)
, A341772

(r = 2, f(n) = φ(n)) , A321322 (r = 2, f(n) = µ(n)) , A158949(
r = 2, f(n) = τ

(
n2
))
, A001158 (r = 3, f(n) = τ (n)) , A001159

(r = 4, f(n) = τ (n)) , A001160 (r = 5, f(n) = τ (n)) , A281372
(r = 4, f(n) = σ1 (n)) , A282097 (r = 3, f(n) = σ2 (n)) .

Next we give a multivariable extension of the companion identity (2) to
Cesáro's identity.

Theorem 2. Let f be an arithmetical function. Then

∑
ki∈[n]

f

(
n

gcd (k1, k2, ..., kr, n)

)
=
∑
d|n

f(d)Jr(d) .

Proof. As in Theorem1 we prove the theorem only in the case r = 2 (this
particular case of the theorem has been observed by Werner Schulte - see his
comment in A350156). The extension of the theorem to the general case is
straightforward.

For each positive integer d, a divisor of n, we de�ne the codivisor d′ = n/d. We
de�ne the subset Ad′ of the Cartesian product An = [n]X [n] by

Ad′ = {(i, j) : i, j ∈ [n] and gcd(i, j, n) = d′} .

Clearly, An is the disjoint union of the subsets Ad′ taken over all the divisors d
of n:

An = td|nAd′ .

One checks that the function f takes the constant value f(d) on A′d. Hence∑
i,j∈[n]

f

(
n

gcd(i, j, n)

)
=
∑
d|n

f(d)|Ad′ | . (6)

In Theorem 1 we showed that |Ad′ | is equal to J2(n/d′) = J2(d).

Hence by (6) ∑
i,j∈[n]

f

(
n

gcd(i, j, n)

)
=
∑
d|n

f(d)J2(d) ,

completing the proof of the Theorem in the case r = 2.�

Examples 3.2. A084218 (r = 2, f(n) = n2) and A078615
(r = 2, f(n) = µ(n)2).
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4. Two GCD sum identities.

One easy consequence of Theorem 1 is the following pretty identity for gcd
sums.

Theorem 3. For positive integers i and j,∑
k′s∈[n]

gcd (k1, k2, ..., ki, n)
j

=
∑

k′s∈[n]

gcd (k1, k2, ..., kj , n)
i
. (7)

Proof. We show that the arithmetic functions on both sides of (7) have the
same D.g.f.'s on a region of the complex plane. The theorem then follows by
the uniqueness of the coe�cients of a Dirichlet series convergent in an open
domain of C.

By Theorem 1, the left-hand side of (7) is equal to the divisor sum∑
d|n

djJi(n/d), (8)

the Dirichlet convolution nj F Ji. The D.g.f. of n
j is ζ(s− j) and hence by

(3) the D.g.f. of the left-hand side of (7) is ζ(s− j)
ζ(s− i)
ζ(s)

, convergent in the

half-plane Re(s) > max(i, j) + 1.

Again by Theorem 1, the right-hand side of (7) is equal to the divisor sum∑
d|n

diJj(n/d),

the Dirichlet convolution N i F Jj , with D.g.f. ζ(s− i)
ζ(s− j)
ζ(s)

, the same as

the D.g.f. of the left-hand side of (7).�

Examples 4.1. A069097 (i = 2, j = 1), A343497 (i = 3, j = 1), A343498
(i = 4, j = 1) and A368743 (i = 2, j = 3).

We conclude with a second identity for gcd sums involving the sum of divisors
function σk, de�ned by

σk(n) =
∑
d|n

dk.

The function σk is a multiplicative function of n with D.g.f. ζ(s)ζ(s− k),
convergent for Re(s) > k + 1 when k ≥ 0.
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Theorem 4. For positive integers i and j,∑
k′s∈[n]

σi (gcd(k1, k2, ..., kj)) =
∑

k′s∈[n]

σj (gcd(k1,k2,..., ki)) . (9)

Sketchproof. Exactly similar to the proof of Theorem 3. One uses Theorem
1 to express the left-hand and right-hand sides of (9) as Dirichlet convolutions
and then show that their corresponding D.g.f.'s are equal on a half-plane of
C.�

Examples 4.2. A064987 (i = 1, j = 2), A328259 (i = 1, j = 3), A281372
(i = 1, j = 4) and A282097 (i = 2, j = 3).
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