login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cubic residues mod 10^n, or number of distinct n-digit endings of cubes.
2

%I #26 Mar 27 2024 13:47:54

%S 1,10,63,505,5050,47899,466237,4662370,46308087,461504593,4615045930,

%T 46111077091,460913873941,4609138739410,46086465166623,

%U 460840040641225,4608400406412250,46083388790070379,460830811531341997,4608308115313419970,46083004243912737927

%N Number of cubic residues mod 10^n, or number of distinct n-digit endings of cubes.

%H Alois P. Heinz, <a href="/A046638/b046638.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,0,134,-1340,0,-1133,11330,0,1000,-10000).

%F a(n) = A046530(10^n) = A046630(n)*A046633(n). - _R. J. Mathar_, Feb 28 2011

%F a(n) ~ 100/217 * 10^n, so large terms start 460829493.... - _Charles R Greathouse IV_, Jan 03 2013

%F G.f.: -(10000*x^9+9000*x^8-5130*x^6-2357*x^5+259*x^3+37*x^2-1) / ((x-1)*(2*x-1)*(5*x-1)*(10*x-1)*(x^2+x+1)*(25*x^2+5*x+1)*(4*x^2+2*x+1)). - _Alois P. Heinz_, Jan 03 2013

%e a(1)=10 because a cube may end with any digit (10 possible combinations); a(2)=63 because a cube may end with 63 2-digit combinations (including leading zeros).

%e A cube may end with 63 different 2-digit combinations: 00, 01, 03, 04, 07, 08, 09, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 96, 97, 99. Numbers ending with 14 say cannot be cubes. See also A075821, A075823. - _Zak Seidov_, Oct 18 2002

%o (PARI) a(n)=(5^(n+2)+30)\31*((4<<n+6)\7) \\ _Charles R Greathouse IV_, Jan 03 2013

%Y Cf. A075821, A075823.

%K nonn,easy,base

%O 0,2

%A _David W. Wilson_

%E Edited by _N. J. A. Sloane_, Oct 19 2008