Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Jan 19 2019 02:41:02
%S 1,5,37,293,2341,18725,149797,1198373,9586981,76695845,613566757,
%T 4908534053,39268272421,314146179365,2513169434917,20105355479333,
%U 160842843834661,1286742750677285,10293942005418277,82351536043346213
%N Number of cubic residues mod 8^n.
%H Ralf Stephan, <a href="https://arxiv.org/abs/math/0409509">Prove or disprove: 100 conjectures from the OEIS</a>, arXiv:math/0409509 [math.CO], 2004.
%H E. Wilmer and O. Schirokauer, <a href="http://www.oberlin.edu/math/faculty/wilmer/OEISconj25.pdf">A note on Stephan's conjecture 25</a>, 2004. [broken link]
%H E. Wilmer and O. Schirokauer, <a href="/A046636/a046636.pdf">A note on Stephan's conjecture 25</a>, 2004. [cached copy]
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-8).
%F a(n) = (4*8^n + 3)/7.
%F a(n) = 8*a(n-1) - 3 (with a(0)=1). - _Vincenzo Librandi_, Nov 18 2010
%F From _R. J. Mathar_, Feb 28 2011: (Start)
%F a(n) = A046530(8^n) = A046630(3n).
%F G.f.: ( 1-4*x ) / ( (1-8*x)*(1-x) ). (End)
%F a(n+1) = A226308(3n+2). - _Philippe Deléham_, Feb 24 2014
%t LinearRecurrence[{9, -8}, {1, 5}, 20] (* _Jean-François Alcover_, Jan 19 2019 *)
%Y Cf. A007583.
%K nonn
%O 0,2
%A _David W. Wilson_