|
|
A046179
|
|
Indices of hexagonal numbers that are also pentagonal.
|
|
3
|
|
|
1, 143, 27693, 5372251, 1042188953, 202179284583, 39221739020101, 7608815190614963, 1476070925240282673, 286350150681424223551, 55550453161271059086173, 10776501563135904038493963, 2090585752795204112408742601, 405562859540706461903257570583
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2+sqrt(3))^4 = 97 + 56*sqrt(3). - Ant King, Dec 14 2011
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 194*a(n-1) - a(n-2) - 48.
G.f.: x*(1-52*x+3*x^2)/((1-x)*(1-194*x+x^2)). (End)
a(n) = 1/4 + (3/8)*(97 - 56*sqrt(3))^n + (3/8)*(97 + 56*sqrt(3))^n - (5/24)*(97 - 56*sqrt(3))^n*sqrt(3) + (5/24)*sqrt(3)*(97 + 56*sqrt(3))^n, with n >= 0. - Paolo P. Lava, Sep 26 2008
a(n) = 195*a(n-1) - 195*a(n-2) + a(n-3).
a(n) = (1/24)*sqrt(3)*((sqrt(3)-1)*(2+sqrt(3))^(4n-2)+(sqrt(3)+1)* (2-sqrt(3))^(4n-2)+2*sqrt(3)).
a(n) = ceiling((1/24)*sqrt(3)*(sqrt(3)-1)*(2+sqrt(3))^(4n-2)).
(End)
|
|
MATHEMATICA
|
LinearRecurrence[{195, -195, 1}, {1, 143, 27693}, 11] (* Ant King, Dec 14 2011 *)
|
|
PROG
|
(PARI) Vec(-x*(3*x^2-52*x+1)/((x-1)*(x^2-194*x+1)) + O(x^20)) \\ Colin Barker, Jun 21 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|