|
|
A029555
|
|
Quasi-Carmichael numbers to base 8: squarefree composites n such that (n,2*3*5*7) = 1 and prime p|n ==> p-8|n-8.
|
|
2
|
|
|
143, 17963, 46943, 64583, 85877, 128843, 155933, 208403, 209933, 1992383, 2155283, 2237183, 2973113, 3535883, 3697733, 3834683, 4858631, 8060753, 10109093, 11841383, 12344813, 13107263, 15453383, 16122653, 16533749, 18401183, 18742823
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If multiples of 2, 3, 5 and 7 are not excluded, then terms like 14, 35, 77, 110, 170, 273,... belong to the sequence. - Giovanni Resta, May 21 2013
|
|
LINKS
|
|
|
MATHEMATICA
|
qcm[n_, d_] := Block[{p, e}, {p, e} = Transpose@FactorInteger@n; Length[p] > 1 && Max[e] == 1 && d < Min[p] && And @@ IntegerQ /@ ((n - d)/(p - d))]; Select[Range[10^6], qcm[#, 8] &] (* Giovanni Resta, May 21 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|