login
A029555
Quasi-Carmichael numbers to base 8: squarefree composites n such that (n,2*3*5*7) = 1 and prime p|n ==> p-8|n-8.
2
143, 17963, 46943, 64583, 85877, 128843, 155933, 208403, 209933, 1992383, 2155283, 2237183, 2973113, 3535883, 3697733, 3834683, 4858631, 8060753, 10109093, 11841383, 12344813, 13107263, 15453383, 16122653, 16533749, 18401183, 18742823
OFFSET
1,1
COMMENTS
If multiples of 2, 3, 5 and 7 are not excluded, then terms like 14, 35, 77, 110, 170, 273,... belong to the sequence. - Giovanni Resta, May 21 2013
MATHEMATICA
qcm[n_, d_] := Block[{p, e}, {p, e} = Transpose@FactorInteger@n; Length[p] > 1 && Max[e] == 1 && d < Min[p] && And @@ IntegerQ /@ ((n - d)/(p - d))]; Select[Range[10^6], qcm[#, 8] &] (* Giovanni Resta, May 21 2013 *)
CROSSREFS
Sequence in context: A279115 A199039 A199235 * A265102 A046179 A208680
KEYWORD
nonn
STATUS
approved