The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219509 Pierce expansion of 40 - 16*sqrt(6). 4
 1, 5, 24, 49, 200, 4801, 19208, 46099201, 184396808, 4250272665676801, 17001090662707208, 36129635465198759610694779187201, 144518541860795038442779116748808, 2610701117696295981568349760414651575095962187244375364404428801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 5. For other cases see A219508 (p = 3), A219510 (p = 7) and A219511 (p = 9) LINKS G. C. Greubel, Table of n, a(n) for n = 0..20 J. Paradis, P. Viader, L. Bibiloni Approximation to quadratic irrationals and their Pierce expansions, The Fibonacci Quarterly, Vol.36 No. 2 (1998) 146-153. T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525. Eric Weisstein's World of Mathematics, Pierce Expansion FORMULA a(2*n+2) = 2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n) + 2} for n >= 0. a(2*n+1) = 1/2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} for n >= 0. Recurrence equations: a(0) = 1, a(1) = 5 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1. 40 - 16*sqrt(6) = sum {n >= 0} 1/product {k = 0..n} a(k) = 1 - 1/5 + 1/(5*24) - 1/(5*24*49) + 1/(5*24*49*200) - .... a(2*n) = 8*A084765(n-1)^2 for n >= 2. a(2*n+1) = A084765(n+1) for n >= 0. MATHEMATICA PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[ N[4*(10 - 4*Sqrt[6]) , 7!], 10] (* G. C. Greubel, Nov 14 2016 *) PROG (PARI) r=(5 + 2*sqrt(6))/8; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016 CROSSREFS Cf. A084765, A219508 (p = 3), A219510 (p = 7), A219511 (p = 9). Sequence in context: A030766 A063143 A006145 * A202326 A085646 A121546 Adjacent sequences: A219506 A219507 A219508 * A219510 A219511 A219512 KEYWORD nonn,easy AUTHOR Peter Bala, Nov 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:51 EST 2022. Contains 358672 sequences. (Running on oeis4.)