login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219509 Pierce expansion of 40 - 16*sqrt(6). 4
1, 5, 24, 49, 200, 4801, 19208, 46099201, 184396808, 4250272665676801, 17001090662707208, 36129635465198759610694779187201, 144518541860795038442779116748808, 2610701117696295981568349760414651575095962187244375364404428801 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Paradis et al. have determined the Pierce expansion of the quadratic irrationality 2*(p - 1)*(p - sqrt(p^2 - 1)), p a positive integer greater than or equal to 3. This is the case p = 5. For other cases see A219508 (p = 3), A219510 (p = 7) and A219511 (p = 9)

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..20

J. Paradis, P. Viader, L. Bibiloni Approximation to quadratic irrationals and their Pierce expansions, The Fibonacci Quarterly, Vol.36 No. 2 (1998) 146-153.

T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.

Eric Weisstein's World of Mathematics, Pierce Expansion

FORMULA

a(2*n+2) = 2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n) + 2} for n >= 0.

a(2*n+1) = 1/2*{(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} for n >= 0.

Recurrence equations: a(0) = 1, a(1) = 5 and for n >= 1, a(2*n) = 4*(a(2*n-1) + 1) and a(2*n+1) = 2*(a(2*n-1))^2 - 1.

40 - 16*sqrt(6) = sum {n >= 0} 1/product {k = 0..n} a(k) = 1 - 1/5 + 1/(5*24) - 1/(5*24*49) + 1/(5*24*49*200) - ....

a(2*n) = 8*A084765(n-1)^2 for n >= 2.

a(2*n+1) = A084765(n+1) for n >= 0.

MATHEMATICA

PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[ N[4*(10 - 4*Sqrt[6]) , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

PROG

(PARI) r=(5 + 2*sqrt(6))/8; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

CROSSREFS

Cf. A084765, A219508 (p = 3), A219510 (p = 7), A219511 (p = 9).

Sequence in context: A030766 A063143 A006145 * A202326 A085646 A121546

Adjacent sequences: A219506 A219507 A219508 * A219510 A219511 A219512

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Nov 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 01:51 EST 2022. Contains 358672 sequences. (Running on oeis4.)