login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268538
a(n) is the n-th prime 3-dimensional Catalan number.
2
1, 1, 2, 12, 107, 1178, 14805, 203885, 3002973, 46573347, 752521980, 12571607865, 215925120675, 3796546970232, 68106673339365, 1243210765414512, 23041656826384341
OFFSET
0,3
COMMENTS
"Prime" here is used in the sense of "primitive" or "irreducible".
FORMULA
Lemma 15 of Wettstein (2016) gives a formula in terms of the 3-dimensional Catalan numbers (A005789).
MAPLE
A005789 := proc(n)
2*(3*n)!/(n+2)!/(n+1)!/n! ;
end proc:
maxn := 30 :
Cx := add(A005789(i)*x^i, i=0..maxn) ;
d := 3:
for i from 0 to maxn do
coeftayl(1/Cx^(d*i-1), x=0, i) ;
%/(1-d*i) ;
printf("%d, ", %) ;
end do: # R. J. Mathar, Feb 27 2018
MATHEMATICA
A005789[n_] := 2*(3*n)!/(n+2)!/(n+1)!/n!; Maxn = 30; Cx = Sum[A005789[i]* x^i, {i, 0, Maxn}]; d = 3; Reap[For[i = 0, i <= Maxn, i++, sc = SeriesCoefficient[1/Cx^(d*i-1), {x, 0, i}]; Sow[sc/(1-d*i)]]][[2, 1]] (* Jean-François Alcover, Mar 24 2018, after R. J. Mathar *)
CROSSREFS
Primitive terms from A000108, A005789.
Sequence in context: A036077 A275765 A184975 * A319291 A265132 A080446
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 24 2016
EXTENSIONS
7 more terms from R. J. Mathar, Feb 27 2018
STATUS
approved