login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188816
Triangle read by rows: row n gives (coefficients * (n-1)!) in expansion of pieces k=0..n-1 of the probability mass function for the Irwin-Hall distribution, lowest powers first.
1
1, 0, 1, 2, -1, 0, 0, 1, -3, 6, -2, 9, -6, 1, 0, 0, 0, 1, 4, -12, 12, -3, -44, 60, -24, 3, 64, -48, 12, -1, 0, 0, 0, 0, 1, -5, 20, -30, 20, -4, 155, -300, 210, -60, 6, -655, 780, -330, 60, -4, 625
OFFSET
1,4
COMMENTS
This is the probability distribution for the sum of n independent, random variables, each uniformly distributed on [0,1).
FORMULA
G.f. for piece k in row n: (1/(n-1)!) * Sum_{j=0..k} (-1)^j * C(n,j) * (x-j)^(n-1).
EXAMPLE
For n = 4, k = 1 (four variables, second piece) the function is the polynomial: 1/6 * (4 - 12x + 12x^2 -3x^3). That gives the subsequence [4, -12, 12, -3].
Triangle begins:
[1];
[0,1], [2,-1];
[0,0,1], [-3,6,-2], [9,-6,1];
...
MAPLE
f:= proc(n, k) option remember;
add((-1)^j * binomial(n, j) * (x-j)^(n-1), j=0..k)
end:
T:= (n, k)-> seq(coeff(f(n, k), x, t), t=0..n-1):
seq(seq(T(n, k), k=0..n-1), n=1..7); # Alois P. Heinz, Jul 06 2017
MATHEMATICA
f[n_, k_] := f[n, k] = Sum[(-1)^j Binomial[n, j] (x-j)^(n-1), {j, 0, k}];
T[n_, k_] := Table[Coefficient[f[n, k], x, t], {t, 0, n-1}];
Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 7}] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
CROSSREFS
Differentiation of A188668.
Sequence in context: A017837 A145153 A255517 * A168312 A076837 A055363
KEYWORD
sign,look,tabf
AUTHOR
Thomas Dybdahl Ahle, Apr 11 2011
STATUS
approved