login
A188819
Number of n X 3 binary arrays without the pattern 0 1 diagonally or antidiagonally.
1
8, 25, 48, 81, 120, 169, 224, 289, 360, 441, 528, 625, 728, 841, 960, 1089, 1224, 1369, 1520, 1681, 1848, 2025, 2208, 2401, 2600, 2809, 3024, 3249, 3480, 3721, 3968, 4225, 4488, 4761, 5040, 5329, 5624, 5929, 6240, 6561, 6888, 7225, 7568, 7921, 8280, 8649
OFFSET
1,1
COMMENTS
Column 3 of A188824.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
Conjectures from Colin Barker, Apr 29 2018: (Start)
G.f.: x*(8 + 9*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)).
a(n) = (2 + 8*n + 8*n^2) / 2 for n even.
a(n) = (8*n + 8*n^2) / 2 for n odd.
(End)
EXAMPLE
Some solutions for 4 X 3:
..1..1..1....1..1..1....1..1..0....1..1..1....1..0..1....0..1..0....0..1..0
..0..1..1....1..1..1....1..0..1....1..1..1....0..0..0....1..0..1....1..0..1
..1..0..1....1..0..0....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0
..0..0..0....0..0..0....0..0..1....1..1..1....0..0..0....0..0..0....1..0..1
CROSSREFS
Cf. A188824.
Sequence in context: A031096 A373892 A303194 * A123605 A273743 A089613
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 11 2011
STATUS
approved