This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188814 Sum of the "complements" of the integer partitions of n. 3
 0, 0, 0, 1, 4, 12, 27, 57, 107, 192, 327, 538, 855, 1329, 2018, 3003, 4402, 6349, 9045, 12720, 17713, 24395, 33335, 45118, 60655, 80888, 107242, 141177, 184905, 240679, 311850, 401860, 515725, 658630, 838006, 1061561, 1340193, 1685271, 2112576, 2638727 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Consider the m x k rectangle corresponding to an integer partition p of n, where m is the greatest part of p and k is the number of parts of p.  Fit the Ferrers diagram of p inside its corresponding rectangle.  a(n) is the number of empty spaces in all such rectangles over all partitions of n. REFERENCES Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge, 2003, page 145. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k>0} k*A268192(n,k). - Alois P. Heinz, Feb 12 2016 EXAMPLE a(4) = 4 because the partitions 4, 2+2, 1+1+1+1 have no empty spaces while the partitions 3+1 and 2+1+1 each have two. MAPLE b:= proc(n, i) option remember; local f, g;       if n=0 or i=1 then [1, n]     elif i<1 then [0, 0]     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));          [f[1]+g[1], f[2]+g[2]+g[1]]       fi     end: a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n) -n*b(n, n)[1]: seq(a(n), n=0..40);  # Alois P. Heinz, Apr 22 2011, Apr 11 2012 MATHEMATICA f[list_]:= Total[Select[Reverse[Table[Max[list]-list[[i]], {i, 1, Length[list]}]], #>0&]]; Table[Total[Map[f, IntegerPartitions[n]]], {n, 0, 30}] (* second program: *) b[n_, i_] := b[n, i] = Module[{f, g}, If [n==0 || i==1, {1, n}, If[i<1, {0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := Sum[Sum[i, {i, b[n-j, Min[j, n-j]]}]*j, {j, 1, n}]-n*b[n, n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *) CROSSREFS Cf. A066186, A182094, A268192. Sequence in context: A062479 A327032 A007009 * A104384 A013697 A306055 Adjacent sequences:  A188811 A188812 A188813 * A188815 A188816 A188817 KEYWORD nonn AUTHOR Geoffrey Critzer, Apr 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 11:43 EST 2019. Contains 329999 sequences. (Running on oeis4.)