login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327032
a(n) = T(n, 4) with T(n, k) = Sum_{d|k} phi(d)*binomial(n - 1 + k/d, k/d).
1
0, 4, 12, 27, 53, 95, 159, 252, 382, 558, 790, 1089, 1467, 1937, 2513, 3210, 4044, 5032, 6192, 7543, 9105, 10899, 12947, 15272, 17898, 20850, 24154, 27837, 31927, 36453, 41445, 46934, 52952, 59532, 66708, 74515, 82989, 92167, 102087, 112788, 124310, 136694
OFFSET
0,2
FORMULA
G.f.: ((2*x^2 - 3*x + 2)*(x - 2)*x)/(x - 1)^5.
a(n) = ((7*n^2 - 14*n - 9)*a(n-1) - 2*(2*n^2 + n - 3)*a(n-2))/(3*(n^2 - 4*n + 3)) for n >= 4.
a(n) = n*(n*(n*(n + 6) + 23) + 66)/24.
MAPLE
a := n -> n*(n*(n*(n + 6) + 23) + 66)/24:
seq(a(n), n=0..41);
MATHEMATICA
Table[(66n+23n^2+6n^3+n^4)/24, {n, 0, 50}] (* Harvey P. Dale, Mar 10 2020 *)
PROG
(PARI) a(n)=n*(n*(n*(n+6)+23)+66)/24 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Cf. A327031 (square array), A000004 (k=0), A001477 (k=1), A000096 (k=2), A255993 (k=3 conj.), this sequence (k=4).
Sequence in context: A104385 A213760 A062479 * A007009 A188814 A104384
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Aug 25 2019
STATUS
approved