OFFSET
1,5
COMMENTS
Rows are symmetric, so T(n,k) = T(n,n-1-k).
T(n,k) is the number of permutations of [n] that avoid the patterns 1342, 2341, 3142, 3241, 3412, and 3421 and have k descents.
LINKS
Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
FORMULA
T(n,k) = N(n,k+1) + Sum_{i=1..n-2} Sum_{j=1..m} N(n-i-1,j) * N(i,k-j+1), where N(i,j) = (1/i) * binomial(i,j) * binomial(i,j-1) are the Narayana numbers given in A001263.
From Vladimir Kruchinin, Nov 16 2020: (Start)
T(n,k) = N(n,k) +2*C(n-1,k-2)*C(n-1,k)/(n-1). (End)
EXAMPLE
Triangle begins:
1,
1, 1,
1, 4, 1,
1, 8, 8, 1,
1, 13, 28, 13, 1,
1, 19, 70, 70, 19, 1
...
MATHEMATICA
Flatten[Table[Table[(1/n) Binomial[n, m + 1] Binomial[n, m] + Sum[Sum[(1/(n - i - 1)) Binomial[n - i - 1, j] Binomial[n - i - 1, j - 1] (1/i) Binomial[i, m - j + 1] Binomial[i, m - j], {j, 1, m}], {i, 1, n - 2}], {m, 0, n - 1}], {n, 1, 10}]]
CROSSREFS
KEYWORD
AUTHOR
Colin Defant, Sep 15 2018
STATUS
approved