login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132789
Triangle read by rows: T(n,k) = A007318(n-1, k-1) + A001263(n, k) - 1.
2
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 25, 13, 1, 1, 19, 59, 59, 19, 1, 1, 26, 119, 194, 119, 26, 1, 1, 34, 216, 524, 524, 216, 34, 1, 1, 43, 363, 1231, 1833, 1231, 363, 43, 1, 1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1, 1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869
OFFSET
1,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
FORMULA
Equals A007318 + A001263 - A000012 as infinite lower triangular matrices.
A symmetrical triangle recursion: let q=4; t(n,m,0)=Binomial[n,m]; t(n,m,1)=Narayana(n,m); t(n,m,2)=Eulerian(n+1,m); t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).
T(n,k) = binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1. - Andrew Howroyd, Sep 08 2018
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 8, 8, 1;
1, 13, 25, 13, 1;
1, 19, 59, 59, 19, 1;
1, 26, 119, 194, 119, 26, 1;
1, 34, 216, 524, 524, 216, 34, 1;
1, 43, 363, 1231, 1833, 1231, 363, 43, 1;
1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1;
1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869, 64, 1;
...
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
t[n_, m_, 2] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
PROG
(PARI) T(n, k)={if(k<=n, binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1, 0)}
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Sep 08 2018
CROSSREFS
Column k=2 is A034856.
Row sums are A132790.
Sequence in context: A334552 A347676 A177947 * A319251 A100754 A332307
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 30 2007
EXTENSIONS
More terms, Mma program and additional comments from Roger L. Bagula, Apr 20 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Name clarified by Andrew Howroyd, Sep 08 2018
STATUS
approved