login
A318812
Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.
31
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 20, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 51, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 90, 1, 4, 1, 3, 1, 4, 1, 80, 1, 1, 3, 3, 1, 4, 1, 51, 6, 1, 1
OFFSET
1,8
COMMENTS
A total multiset partition of m is either m itself or a total multiset partition of a multiset partition of m that is neither minimal nor maximal.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Dec 30 2019
LINKS
FORMULA
a(product of n distinct primes) = A005121(n).
a(prime^n) = A318813(n).
EXAMPLE
The a(24) = 11 total multiset partitions:
{1,1,1,2}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
{{{1}},{{1},{1,2}}}
{{{1}},{{2},{1,1}}}
{{{2}},{{1},{1,1}}}
{{{1,2}},{{1},{1}}}
{{{1,1}},{{1},{2}}}
The a(24) = 11 total factorizations:
24,
(2*12), (3*8), (4*6),
(2*2*6), (2*3*4),
((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
totfac[n_]:=1+Sum[totfac[Times@@Prime/@f], {f, Select[facs[n], 1<Length[#]<PrimeOmega[n]&]}];
Array[totfac, 100]
PROG
(PARI)
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n, 2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ Andrew Howroyd, Dec 30 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2018
STATUS
approved