OFFSET
1,8
COMMENTS
A total multiset partition of m is either m itself or a total multiset partition of a multiset partition of m that is neither minimal nor maximal.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Dec 30 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000
EXAMPLE
The a(24) = 11 total multiset partitions:
{1,1,1,2}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
{{{1}},{{1},{1,2}}}
{{{1}},{{2},{1,1}}}
{{{2}},{{1},{1,1}}}
{{{1,2}},{{1},{1}}}
{{{1,1}},{{1},{2}}}
The a(24) = 11 total factorizations:
24,
(2*12), (3*8), (4*6),
(2*2*6), (2*3*4),
((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
totfac[n_]:=1+Sum[totfac[Times@@Prime/@f], {f, Select[facs[n], 1<Length[#]<PrimeOmega[n]&]}];
Array[totfac, 100]
PROG
(PARI)
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n, 2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ Andrew Howroyd, Dec 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2018
STATUS
approved