

A258487


Number of tangled chains of length k=4.


8



1, 1, 14, 2140, 1017219, 1110178602, 2320017306125, 8278981347401059, 46556715158334549170, 388779284837787599307987, 4605471565794120802036550000, 74633554055057890778698344509705, 1606481673354648219373898238155693682, 44821655543075499856527523557216582931002
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Tangled chains are ordered lists of k rooted binary trees with n leaves and a matching between each leaf from the ith tree with a unique leaf from the (i+1)st tree up to isomorphism on the binary trees. This sequence fixes k=4, and n = 1,2,3,...


REFERENCES

R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.


LINKS

S. Billey, Table of n, a(n) for n = 1..20
Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.


FORMULA

t(n) = Sum_{b=(b(1),...,b(t))} Product_{i=2..t} (2(b(i)+...+b(t))1)^4)/z(b) where the sum is over all binary partitions of n and z(b) is the size of the stabilizer of a permutation of cycle type b under conjugation.


CROSSREFS

Cf. A000123 (binary partitions), A258620 (tanglegrams), A258485, A258486, A258487, A258488, A258489 (tangled chains), A259114 (unordered tanglegrams).
Sequence in context: A198601 A233076 A134814 * A206753 A279577 A015515
Adjacent sequences: A258484 A258485 A258486 * A258488 A258489 A258490


KEYWORD

nonn


AUTHOR

Sara Billey, Matjaz Konvalinka, and Frederick A. Matsen IV, May 31 2015


STATUS

approved



