login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258969
E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.
7
1, 2, 6, 42, 390, 4698, 69174, 1203498, 24163110, 549811962, 13982486166, 393026414922, 12099527531910, 404881353252378, 14632253175107574, 567974815524008298, 23567351945550373350, 1040985881615266375482, 48767788927611416600406, 2415210691383917131432842
OFFSET
0,2
COMMENTS
Conjecture: A227250(n+1) = a(n).
LINKS
FORMULA
a(n) ~ (3/(Pi/sqrt(3)-log(2)))^(n+1/2) * n^n / exp(n).
E.g.f.: 1 + Series_Reversion( Integral 1/((2+x)*(1+x+x^2)) dx ). - Paul D. Hanna, Jun 16 2015
EXAMPLE
A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 390*x^4/4! + 4698*x^5/5! + ...
A'(x) = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
1 + A(x)^3 = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
MATHEMATICA
nmax=20; Subscript[a, 0]=1; egf=Sum[Subscript[a, k]*x^k, {k, 0, nmax+1}]; Table[Subscript[a, k]*k!, {k, 0, nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^3-D[egf, x]], x], nmax]==ConstantArray[0, nmax]][[1]]
PROG
(PARI) {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/((2+x)*(1+x+x^2) +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 15 2015
STATUS
approved