login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179330
E.g.f. satisfies: A(x) = (1+x)/(1+3*x) * A(x*(1+x)^2).
2
0, 2, -6, 42, -468, 7080, -133128, 2938824, -73169568, 1997384832, -58814501760, 1868053207680, -65311214042880, 2585560450337280, -115344597684718080, 5424254194395456000, -244310147229735014400, 10256126830544041574400
OFFSET
0,2
FORMULA
E.g.f. A=A(x) satisfies:
. (1+x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...
. (1+x)^2*(1+x*(1+x)^2)^2 = 1 + 2*A + 2^2*A*Dx(A)/2! + 2^3*A*Dx(A*Dx(A))/3! + 2^4*A*Dx(A*Dx(A*Dx(A)))/4! +...
. G001764(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...; G001764(x) = g.f. of A001764;
where Dx(F) = d/dx(x*F).
INVERSION FORMULA:
More generally, if A(x) = A(G(x)) * G(x)/(x*G'(x)) with G(0)=0, G'(0)=1,
then G(x) can be obtained from A=A(x) by the series:
. G(x)/x = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F).
ITERATION FORMULA:
Let G_n(x) denote the n-th iteration of G(x) = x*(1+x)^2, and A=A(x), then:
. A(x) = A(G_n(x)) * G_n(x)/(x*G_n'(x)) for all n;
. G_n(x)/x = 1 + n*A + n^2*A*Dx(A)/2! + n^3*A*Dx(A*Dx(A))/3! + n^4*A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F).
...
MATRIX LOG OF RIORDAN ARRAY (G(x)/x, G(x)) where G(x) = x*(1+x)^2:
. k*A(x) = e.g.f. of column k of the matrix log of triangle A116088 for k>=0.
EXAMPLE
E.g.f.: A(x) = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! - 133128*x^6/6! + 2938824*x^7/7! - 73169568*x^8/8! + 1997384832*x^9/9! - 58814501760*x^10/10! + 1868053207680*x^11/11! - 65311214042880*x^12/12! +...
...
A(x*(1+x)^2) = 2*x + 2*x^2/2! - 18*x^3/3! + 108*x^4/4! - 480*x^5/5! - 2808*x^6/6! + 162792*x^7/7! - 3940128*x^8/8! + 57267648*x^9/9! + 534366720*x^10/10! - 78703384320*x^11/11! + 2883142045440*x^12/12! +...
...
where A(x*(1+x)^2) = (1+3*x)/(1+x) * A(x).
...
Related expansions begin:
. A = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! +...
. A*Dx(A)/2! = 8*x^2/2! - 90*x^3/3! + 1332*x^4/4! - 25200*x^5/5! +...
. A*Dx(A*Dx(A))/3! = 48*x^3/3! - 1248*x^4/4! + 32760*x^5/5! -+...
. A*Dx(A*Dx(A*Dx(A)))/4! = 384*x^4/4! - 18480*x^5/5! + 770400*x^6/6! -+...
. A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 3840*x^5/5! - 300672*x^6/6! +-...
...
Sums of which generate the square of the g.f. of A001764:
. G001764(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...
. G001764(-x)^2 = 1 - 2*x + 7*x^2 - 30*x^3 + 143*x^4 - 728*x^5 +...+ A006013(n)*(-x)^n +...
...
The Riordan array ((1+x)^2, x*(1+x)^2) (cf. A116088) begins:
1;
2, 1;
1, 4, 1;
0, 6, 6, 1;
0, 4, 15, 8, 1;
0, 1, 20, 28, 10, 1;
0, 0, 15, 56, 45, 12, 1; ...
The matrix log of Riordan array ((1+x)^2, x*(1+x)^2) begins:
0;
2, 0;
-6/2!, 4, 0;
42/3!, -12/2!, 6, 0;
-468/4!, 84/3!, -18/2!, 8, 0;
7080/5!, -936/4!, 126/3!, -24/2!, 10, 0;
-133128/6!, 14160/5!, -1404/4!, 168/3!, -30/2!, 12, 0; ...
where the g.f. of the leftmost column equals the e.g.f. of this sequence.
PROG
(PARI) /* E.g.f. satisfies: A(x) = (1+x)/(1+3*x)*A(x*(1+x)^2): */
{a(n)=local(A=2*x, B); for(m=2, n, B=(1+x)/(1+3*x+O(x^(n+3)))*subst(A, x, x*(1+x)^2+O(x^(n+3))); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); n!*polcoeff(A, n)}
(PARI) /* (1+x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! +...: */
{a(n)=local(A=0+sum(m=1, n-1, a(m)*x^m/m!), D=1, R=0); R=-((1+x)^2+x*O(x^n))+1+sum(m=1, n, (D=A*deriv(x*D+x*O(x^n)))/m!); -n!*polcoeff(R, n)}
(PARI) /* First column of the matrix log of triangle A116088: */
{a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(((1+x)^2+x*O(x^n))^c, r-c))), LOG, ID=M^0); LOG=sum(m=1, n+1, -(ID-M)^m/m); n!*LOG[n+1, 1]}
CROSSREFS
Cf. A179331, variants: A179320, A179420.
Sequence in context: A258969 A161632 A115974 * A066864 A181737 A116896
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 21 2010
STATUS
approved