login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179327 G.f.: Product_{n>=1} 1/(1-x^n)^((n-1)!). 7
1, 1, 2, 4, 11, 37, 167, 925, 6164, 47630, 418227, 4105887, 44529413, 528398441, 6807143686, 94588353184, 1409913624333, 22437692156739, 379673925360239, 6806484898946045, 128862141334488784, 2569079946351669286, 53797816061915662161 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..448

FORMULA

Euler transform of (n-1)!.

G.f.: A(x) = exp( Sum_{n>=1} A062363(n)*x^n/n ) where A062363(n) = Sum_{d|n} d!.

a(n) ~ (n-1)! * (1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1860/n^6 + 14793/n^7 + 138166/n^8 + 1494034/n^9 + 18422609/n^10), for coefficients see A256126. - Vaclav Kotesovec, Mar 14 2015

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 37*x^5 + 167*x^6 +...

A(x) = 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)^6*(1-x^5)^24*(1-x^6)^120*...).

log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 27*x^4/4 + 121*x^5/5 + 729*x^6/6 + 5041*x^7/7 + 40347*x^8/8 +...+ A062363(n)*x^n/n +...

MATHEMATICA

nmax=20; CoefficientList[Series[Product[1/(1-x^k)^((k-1)!), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sumdiv(m, d, d!)*x^m/m)+x*O(x^n)), n)}

CROSSREFS

Cf. A062363, A107895, A256126, A261047.

Sequence in context: A173939 A328433 A118182 * A107107 A243565 A101898

Adjacent sequences:  A179324 A179325 A179326 * A179328 A179329 A179330

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 09:06 EDT 2021. Contains 343087 sequences. (Running on oeis4.)