login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258967
a(1)=1, a(2)=2, a(3)=3, a(n) = ceiling(sqrt(a(n-1)*a(n-2)*a(n-3))), n>3.
1
1, 2, 3, 3, 5, 7, 11, 20, 40, 94, 275, 1017, 5128, 37871, 444415, 9290130, 395420005, 40404949540, 12183091294648, 13951642918891149, 82872169787001239679, 3753148776564192982863648, 2083123034674803589767277778237, 25454214863632278822694894280883452911
OFFSET
1,2
LINKS
FORMULA
a(n) is approximately k^(c^n), where c is the real root of x^3 - (x^2 + x + 1)/2 = 0 equal to (1 + (64 - 3*sqrt(417))^(1/3) + (64 + 3*sqrt(417))^(1/3))/6, and k is approximately 1.7450496...
EXAMPLE
a(4) = ceiling(sqrt(1*2*3)) = 3;
a(5) = ceiling(sqrt(2*3*3)) = 5;
a(6) = ceiling(sqrt(3*3*5)) = 7.
MATHEMATICA
RecurrenceTable[{a[n] == Ceiling[Sqrt[a[n - 1] a[n - 2] a[n - 3]]], a[1] == 1, a[2] == 2, a[3] == 3}, a, {n, 1, 23}] (* Michael De Vlieger, Jul 02 2015 *)
a[1] = 1; a[2] = 2; a[3] = 3; a[n_] := a[n] = Ceiling[ Sqrt[ a[n - 1]*a[n - 2]*a[n - 3]]]; Array[a, 23] (* Robert G. Wilson v, Aug 12 2015 *)
nxt[{a_, b_, c_}]:={b, c, Ceiling[Sqrt[a*b*c]]}; NestList[nxt, {1, 2, 3}, 30][[All, 1]] (* Harvey P. Dale, Sep 09 2021 *)
PROG
(Magma) I:=[1, 2, 3]; [n le 3 select I[n] else Ceiling(Sqrt(Self(n-1)*Self(n-2)*Self(n-3))): n in [1..23]];
(PARI) first(m)={my(v=vector(m)); v[1]=1; v[2]=2; v[3]=3; for(i=4, m, v[i]=ceil(sqrt(v[i-1]*v[i-2]*v[i-3]))); v; } \\ Anders Hellström, Aug 20 2015
CROSSREFS
Sequence in context: A241378 A226275 A035066 * A035068 A153643 A053218
KEYWORD
nonn
AUTHOR
Morris Neene, Jun 15 2015
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 09 2021
STATUS
approved