login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258964
Number of (n+2) X (6+2) 0..1 arrays with no 3 X 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 0 or 3 and no column sum 0 or 3.
1
1374, 951, 412, 503, 466, 694, 788, 952, 1004, 1684, 2354, 2767, 3218, 5695, 8618, 10027, 12074, 21739, 33674, 39067, 47498, 85915, 133898, 155227, 189194, 342619, 534794, 619867, 755978, 1369435, 2138378, 2478427, 3023114, 5476699, 8552714
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-2) + 4*a(n-4) - 4*a(n-6) for n>12.
Empirical g.f.: x*(1374 + 951*x - 962*x^2 - 448*x^3 - 5442*x^4 - 3613*x^5 + 4170*x^6 + 2050*x^7 - 32*x^9 + 62*x^10 + 51*x^11) / ((1 - x)*(1 + x)*(1 - 2*x^2)*(1 + 2*x^2)). - Colin Barker, Dec 24 2018
EXAMPLE
Some solutions for n=4:
..1..1..0..1..1..0..0..1....0..1..0..1..0..1..0..1....0..1..1..0..0..1..0..1
..0..1..1..0..0..1..1..0....1..0..0..1..1..0..0..1....1..0..0..1..1..0..0..1
..1..0..0..1..1..0..0..1....0..1..1..0..0..1..1..0....0..1..1..0..0..1..1..0
..0..1..1..0..0..1..1..0....1..0..0..1..1..0..0..1....1..0..0..1..1..0..0..1
..1..0..0..1..1..0..0..1....0..1..1..0..0..1..1..0....0..1..1..0..0..1..1..0
..0..1..1..0..1..0..1..0....1..0..1..0..1..0..1..0....0..0..1..0..1..0..1..0
CROSSREFS
Column 6 of A258966.
Sequence in context: A168167 A069490 A239974 * A349235 A045131 A365868
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 15 2015
STATUS
approved