login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.
7

%I #21 Jun 06 2024 12:25:52

%S 1,2,6,42,390,4698,69174,1203498,24163110,549811962,13982486166,

%T 393026414922,12099527531910,404881353252378,14632253175107574,

%U 567974815524008298,23567351945550373350,1040985881615266375482,48767788927611416600406,2415210691383917131432842

%N E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.

%C Conjecture: A227250(n+1) = a(n).

%H Vaclav Kotesovec, <a href="/A258969/b258969.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ (3/(Pi/sqrt(3)-log(2)))^(n+1/2) * n^n / exp(n).

%F E.g.f.: 1 + Series_Reversion( Integral 1/((2+x)*(1+x+x^2)) dx ). - _Paul D. Hanna_, Jun 16 2015

%e A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 390*x^4/4! + 4698*x^5/5! + ...

%e A'(x) = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...

%e 1 + A(x)^3 = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...

%t nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^3-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]

%o (PARI) {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/((2+x)*(1+x+x^2) +x*O(x^n)) )); n!*polcoeff(A,n)}

%o for(n=0,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Jun 16 2015

%Y Cf. A000831, A024396, A193534, A227250, A258970, A258971, A258880, A258994.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Jun 15 2015