login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258879
Numbers n such that n is the average of four consecutive primes n-7, n-1, n+1 and n+7.
1
30, 60, 270, 570, 600, 1230, 1290, 1620, 2340, 2550, 3540, 4020, 4650, 5850, 6270, 6360, 6570, 10860, 11490, 14550, 15270, 17490, 19080, 19380, 19470, 23670, 26730, 29130, 32370, 34260, 41610, 48480, 49200, 49530, 51420, 51480
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30*n).
LINKS
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
a(n) = A078854(n) + 7.
EXAMPLE
For n=30: 23, 29, 31, 37 are consecutive primes (n-7=23, n-1=29, n+1=31, n+7=37).
For n=60: 53, 59, 61, 67 are consecutive primes (n-7=53, n-1=59, n+1=61, n+7=67).
MATHEMATICA
Select[ 5 Range@ 11000, PrimeQ[# - 7] && PrimeQ[# - 1] && PrimeQ[# + 1] && PrimeQ[# + 7] &] (* Robert G. Wilson v, Jun 28 2015 *)
PROG
(Python)
from sympy import isprime, prevprime, nextprime
for i in range(0, 10001, 2):
..if isprime(i-1) and isprime(i+1):
....if prevprime(i-1) == i-7 and nextprime(i+1) == i+7 : print (i, end=', ')
(Magma) [n: n in [13..2*10^5] | IsPrime(n-7) and IsPrime(n-1) and IsPrime(n+1) and IsPrime(n+7)]; // Vincenzo Librandi Jul 16 2015
(PARI) main(size)={my(v=vector(size), i, t=8); for(i=1, size, while(1, if(isprime(t-7)&&isprime(t-1)&&isprime(t+1)&&isprime(t+7), v[i]=t; break, t++)); t++); return(v); } /* Anders Hellström, Jul 17 2015 */
CROSSREFS
Cf. A014574, A077800 (twin primes), A078854, A249674, A256753.
Sequence in context: A235483 A064783 A228877 * A053014 A042784 A042786
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Jun 13 2015
STATUS
approved